001     620206
005     20250715171238.0
024 7 _ |a 10.1002/adfm.202414914
|2 doi
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a altmetric:171410166
|2 altmetric
024 7 _ |a WOS:001367472900001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4404936327
037 _ _ |a PUBDB-2025-00079
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Aleksich, Mariya
|0 0009-0004-2251-6013
|b 0
245 _ _ |a Ligand‐Mediated Quantum Yield Enhancement in 1‐D Silver Organothiolate Metal–Organic Chalcogenolates
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742907537_940679
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a waiting for fulltext
520 _ _ |a X-ray free electron laser (XFEL) microcrystallography and synchrotron single-crystal crystallography are used to evaluate the role of organic substituent position on the optoelectronic properties of metal–organic chalcogenolates (MOChas). MOChas are crystalline 1D and 2D semiconducting hybrid materials that have varying optoelectronic properties depending on composition, topology, and structure. While MOChas have attracted much interest, small crystal sizes impede routine crystal structure determination. A series of constitutional isomers where the aryl thiol is functionalized by either methoxy or methyl ester are solved by small molecule serial femtosecond X-ray crystallography (smSFX) and single crystal rotational crystallography. While all the methoxy examples have a low quantum yield (0-1%), the methyl ester in the ortho position yields a high quantum yield of 22%. The proximity of the oxygen atoms to the silver inorganic core correlates to a considerable enhancement of quantum yield. Four crystal structures are solved at a resolution range of 0.8–1.0 Å revealing a collapse of the 2D topology for functional groups in the 2- and 3- positions, resulting in needle-like crystals. Further analysis using density functional theory (DFT) and many-body perturbation theory (MBPT) enables the exploration of complex excitonic phenomena within easily prepared material systems.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
542 _ _ |i 2024-12-01
|2 Crossref
|u http://onlinelibrary.wiley.com/termsAndConditions#vor
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a XFEL
|e FXE: Femtosecond X-ray Experiments
|f SASE1
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL-FXE-20150101
|5 EXP:(DE-H253)XFEL-FXE-20150101
|6 EXP:(DE-H253)XFEL-SASE1-20150101
|x 0
700 1 _ |a Cho, Yeongsu
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Paley, Daniel W.
|0 P:(DE-H253)PIP1101325
|b 2
700 1 _ |a Willson, Maggie C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nyiera, Hawi N.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kotei, Patience A.
|0 P:(DE-H253)PIP1101324
|b 5
700 1 _ |a Oklejas, Vanessa
|0 P:(DE-H253)PIP1101312
|b 6
700 1 _ |a Mittan-Moreau, David W.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schriber, Elyse A.
|0 P:(DE-H253)PIP1089148
|b 8
700 1 _ |a Christensen, Kara
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Inoue, Ichiro
|0 P:(DE-H253)PIP1091862
|b 10
700 1 _ |a Owada, Shigeki
|0 P:(DE-H253)PIP1082420
|b 11
700 1 _ |a Tono, Kensuke
|0 P:(DE-H253)PIP1110450
|b 12
700 1 _ |a Sugahara, Michihiro
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Inaba-Inoue, Satomi
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Vakili, Mohammad
|0 P:(DE-H253)PIP1017960
|b 15
700 1 _ |a Milne, Christopher J.
|0 P:(DE-H253)PIP1018116
|b 16
700 1 _ |a DallAntonia, Fabio
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Khakhulin, Dmitry
|0 P:(DE-H253)PIP1008872
|b 18
700 1 _ |a Ardana-Lamas, Fernando
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Lima, Frederico
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Valerio, Joana
|0 P:(DE-H253)PIP1010569
|b 21
700 1 _ |a Han, Huijong
|0 P:(DE-H253)PIP1015711
|b 22
700 1 _ |a Gallo, Tamires
|0 P:(DE-H253)PIP1087968
|b 23
700 1 _ |a Yousef, Hazem
|0 P:(DE-H253)PIP1086109
|b 24
700 1 _ |a Turkot, Oleksii
|0 P:(DE-H253)PIP1013504
|b 25
700 1 _ |a Macias, Ivette J. Bermudez
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Kluyver, Thomas
|0 P:(DE-H253)PIP1081878
|b 27
700 1 _ |a Schmidt, Philipp
|0 P:(DE-H253)PIP1014429
|b 28
700 1 _ |a Gelisio, Luca
|0 P:(DE-H253)PIP1028523
|b 29
700 1 _ |a Round, Adam R.
|0 P:(DE-H253)PIP1028533
|b 30
700 1 _ |a Jiang, Yifeng
|0 P:(DE-H253)PIP1018302
|b 31
700 1 _ |a Vinci, Doriana
|0 P:(DE-H253)PIP1101423
|b 32
700 1 _ |a Uemura, Yohei
|0 P:(DE-H253)PIP1084874
|b 33
700 1 _ |a Kloos, Marco
|0 P:(DE-H253)PIP1082156
|b 34
700 1 _ |a Mancuso, Adrian P.
|0 P:(DE-H253)PIP1006340
|b 35
700 1 _ |a Warren, Mark
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Sauter, Nicholas K.
|0 P:(DE-H253)PIP1081690
|b 37
700 1 _ |a Zhao, Jing
|0 P:(DE-H253)PIP1082045
|b 38
700 1 _ |a Smidt, Tess
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Kulik, Heather J.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Sharifzadeh, Sahar
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Brewster, Aaron S.
|0 P:(DE-H253)PIP1081443
|b 42
700 1 _ |a Hohman, J. Nathan
|0 P:(DE-H253)PIP1099610
|b 43
|e Corresponding author
773 1 8 |a 10.1002/adfm.202414914
|b Wiley
|d 2024-12-01
|3 journal-article
|2 Crossref
|t Advanced Functional Materials
|y 2024
|x 1616-301X
773 _ _ |a 10.1002/adfm.202414914
|g p. 2414914
|0 PERI:(DE-600)2039420-2
|n 6
|p 2414914
|t Advanced functional materials
|v 35
|y 2025
|x 1616-301X
856 4 _ |u https://bib-pubdb1.desy.de/record/620206/files/Adv%20Funct%20Materials%20-%202024%20-%20Aleksich%20-%20Ligand%E2%80%90Mediated%20Quantum%20Yield%20Enhancement%20in%201%E2%80%90D%20Silver%20Organothiolate%20Metal.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/620206/files/Adv%20Funct%20Materials%20-%202024%20-%20Aleksich%20-%20Ligand%E2%80%90Mediated%20Quantum%20Yield%20Enhancement%20in%201%E2%80%90D%20Silver%20Organothiolate%20Metal.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:620206
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1101325
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1101325
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1101324
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1101324
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1101312
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1101312
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1089148
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1089148
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1091862
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 10
|6 P:(DE-H253)PIP1091862
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1082420
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 11
|6 P:(DE-H253)PIP1082420
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1110450
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 12
|6 P:(DE-H253)PIP1110450
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1017960
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 15
|6 P:(DE-H253)PIP1017960
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 15
|6 P:(DE-H253)PIP1017960
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 16
|6 P:(DE-H253)PIP1018116
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 18
|6 P:(DE-H253)PIP1008872
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 21
|6 P:(DE-H253)PIP1010569
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 21
|6 P:(DE-H253)PIP1010569
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-H253)PIP1010569
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 22
|6 P:(DE-H253)PIP1015711
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 23
|6 P:(DE-H253)PIP1087968
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 23
|6 P:(DE-H253)PIP1087968
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 24
|6 P:(DE-H253)PIP1086109
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 25
|6 P:(DE-H253)PIP1013504
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 27
|6 P:(DE-H253)PIP1081878
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 28
|6 P:(DE-H253)PIP1014429
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 29
|6 P:(DE-H253)PIP1028523
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 29
|6 P:(DE-H253)PIP1028523
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 29
|6 P:(DE-H253)PIP1028523
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 30
|6 P:(DE-H253)PIP1028533
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 31
|6 P:(DE-H253)PIP1018302
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 31
|6 P:(DE-H253)PIP1018302
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 31
|6 P:(DE-H253)PIP1018302
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 32
|6 P:(DE-H253)PIP1101423
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 33
|6 P:(DE-H253)PIP1084874
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 33
|6 P:(DE-H253)PIP1084874
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 34
|6 P:(DE-H253)PIP1082156
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 35
|6 P:(DE-H253)PIP1006340
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 35
|6 P:(DE-H253)PIP1006340
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 37
|6 P:(DE-H253)PIP1081690
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 37
|6 P:(DE-H253)PIP1081690
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 38
|6 P:(DE-H253)PIP1082045
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 42
|6 P:(DE-H253)PIP1081443
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 42
|6 P:(DE-H253)PIP1081443
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 43
|6 P:(DE-H253)PIP1099610
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 43
|6 P:(DE-H253)PIP1099610
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV FUNCT MATER : 2022
|d 2024-12-16
920 1 _ |0 I:(DE-H253)XFEL_E1_SPB_SFX-20210408
|k XFEL_E1_SPB/SFX
|l SPB/SFX
|x 0
920 1 _ |0 I:(DE-H253)FS-CFEL-1-20120731
|k FS-CFEL-1
|l CFEL-Coherent X-Ray Imaging
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)XFEL_E1_SPB_SFX-20210408
980 _ _ |a I:(DE-H253)FS-CFEL-1-20120731
980 _ _ |a UNRESTRICTED
999 C 5 |9 -- missing cx lookup --
|a 10.1021/cm010403d
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/ja002224n
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/ja065799e
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nmat4823
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acs.chemmater.3c02275
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41598-020-59457-7
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/smsc.202300110
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41586-021-04218-3
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acsanm.8b00662
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.3389/fchem.2021.593637
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acsnano.0c08096
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0020-1693(01)00745-9
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acsanm.0c00057
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/jacs.2c11896
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/jacs.3c05745
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/jacs.9b02846
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1039/C8DT00016F
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acsnano.2c06204
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acsnano.1c01337
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acs.chemmater.4c00653
|2 Crossref
999 C 5 |a 10.1002/lpor.202300309
|1 Li D.
|9 -- missing cx lookup --
|2 Crossref
|t Laser Photonics Rev.
|v 17
|y 2023
999 C 5 |9 -- missing cx lookup --
|a 10.1002/adom.202202213
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1039/D2NR03935D
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/jacs.3c02183
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41557-023-01162-9
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/jacs.8b08878
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1039/C4TC00459K
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1088/2053-1583/aa6ca6
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.cattod.2018.01.024
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acsami.1c14335
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.mattod.2022.03.015
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1039/D3TB00537B
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acsnano.1c07498
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.isci.2023.106016
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1063/1.109348
|2 Crossref
999 C 5 |a 10.1007/978-94-011-4245-8_12
|9 -- missing cx lookup --
|1 Srinivas S.
|p 295 -
|2 Crossref
|y 2000
999 C 5 |a 10.1039/C9SC05185F
|9 -- missing cx lookup --
|1 Kovalevskiy A.
|p 962 -
|2 Crossref
|t Chem. Sci.
|v 11
|y 2019
999 C 5 |9 -- missing cx lookup --
|a 10.1002/anie.201405936
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/ejic.202000359
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/0038-1098(92)90506-5
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1080/00958972.2017.1370088
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.inoche.2020.108410
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.3390/cancers14040900
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1139/v72-047
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41467-020-17200-w
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1039/D4NR01152J
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/jacs.2c06093
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/sciadv.aay0107
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.ccr.2023.215508
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/jacs.1c02098
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.3390/nano10061032
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.7567/APEX.11.015201
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1039/C5NR00383K
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acs.nanolett.6b00536
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/acsphotonics.8b00249
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41467-021-27418-x
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.talanta.2023.125566
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1107/S1600577515004658
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41566-020-0607-z
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1107/S0909049512008801
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21