000620187 001__ 620187
000620187 005__ 20250723105657.0
000620187 0247_ $$2doi$$a10.1016/j.radphyschem.2025.112509
000620187 0247_ $$2ISSN$$a0969-806X
000620187 0247_ $$2ISSN$$a1359-0197
000620187 0247_ $$2ISSN$$a1878-1020
000620187 0247_ $$2ISSN$$a1879-0895
000620187 0247_ $$2WOS$$aWOS:001411244200001
000620187 0247_ $$2openalex$$aopenalex:W4405997926
000620187 037__ $$aPUBDB-2025-00065
000620187 041__ $$aEnglish
000620187 082__ $$a530
000620187 1001_ $$0P:(DE-H253)PIP1015370$$aHauko, R.$$b0$$eCorresponding author
000620187 245__ $$aIodine K- and L-edge X-ray absorption spectra of HI: The effect of molecular orbitals and core subshells
000620187 260__ $$aFrankfurt, M.$$bPergamon Press$$c2025
000620187 3367_ $$2DRIVER$$aarticle
000620187 3367_ $$2DataCite$$aOutput Types/Journal article
000620187 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736780718_3657211
000620187 3367_ $$2BibTeX$$aARTICLE
000620187 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000620187 3367_ $$00$$2EndNote$$aJournal Article
000620187 500__ $$aISSN 0969-806X not unique: **3 hits**. Waiting for fulltext
000620187 520__ $$aAnalysis of the recently measured absorption spectra of molecular HI at K and L edges of iodine, in parallel withpreviously measured spectra of noble gas Xe and the K edge spectrum of atomic I, is presented. A strongdependence of some valence multielectron photoexcitation features on the orbital momentum of the core vacancyis found, attributed to the change of the symmetry of the HI molecule: the shake-up coexcitation of avalence electron to a free molecular orbital is much stronger at L3 than L1 edge. The effect of angular momentumof the core hole on the shake processes of deeper multielectron photoexcitations is found negligible. Both HI andXe exhibit a much weaker one-electron transition [1s]6p than monatomic I. At the K edge, the strength ofcoexcitations of 4d, 4p and 3d subshells in atomic I is close to the HI and Xe. The same is found for HI and Xe atthe L edges, due to a weak contribution of the additional free molecular orbital in HI.
000620187 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000620187 536__ $$0G:(DE-H253)I-20180356-EC$$aFS-Proposal: I-20180356 EC (I-20180356-EC)$$cI-20180356-EC$$x1
000620187 536__ $$0G:(EU-Grant)730872$$aCALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the World (730872)$$c730872$$fH2020-INFRAIA-2016-1$$x2
000620187 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000620187 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000620187 7001_ $$aGomilšek, J. Padežnik$$b1
000620187 7001_ $$0P:(DE-H253)PIP1008407$$aKodre, A.$$b2
000620187 7001_ $$0P:(DE-H253)PIP1008387$$aArčon, I.$$b3
000620187 7001_ $$0P:(DE-H253)PIP1093529$$aLuin, U.$$b4
000620187 773__ $$0PERI:(DE-600)2019621-0$$a10.1016/j.radphyschem.2025.112509$$gVol. 229, p. 112509 -$$p112509$$tRadiation physics and chemistry$$v229$$x0969-806X$$y2025
000620187 8564_ $$uhttps://doi.org/10.1016/j.radphyschem.2025.112509
000620187 8564_ $$uhttps://bib-pubdb1.desy.de/record/620187/files/Reprint_Jod_K_L_Hauko_1-s2.0-S0969806X25000015-main.pdf$$yRestricted
000620187 8564_ $$uhttps://bib-pubdb1.desy.de/record/620187/files/Reprint_Jod_K_L_Hauko_1-s2.0-S0969806X25000015-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000620187 909CO $$ooai:bib-pubdb1.desy.de:620187$$pec_fundedresources$$pVDB$$popenaire
000620187 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015370$$aExternal Institute$$b0$$kExtern
000620187 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008407$$aExternal Institute$$b2$$kExtern
000620187 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008387$$aExternal Institute$$b3$$kExtern
000620187 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093529$$aExternal Institute$$b4$$kExtern
000620187 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000620187 9141_ $$y2025
000620187 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
000620187 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
000620187 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
000620187 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIAT PHYS CHEM : 2022$$d2024-12-13
000620187 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000620187 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000620187 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000620187 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000620187 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000620187 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
000620187 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000620187 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
000620187 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000620187 980__ $$ajournal
000620187 980__ $$aVDB
000620187 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000620187 980__ $$aUNRESTRICTED