001     620135
005     20250115142529.0
024 7 _ |a Musa:2024mqq
|2 INSPIRETeX
024 7 _ |a inspire:2844396
|2 inspire
024 7 _ |a arXiv:2410.24129
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2025-00052
|2 datacite_doi
037 _ _ |a PUBDB-2025-00052
041 _ _ |a English
088 _ _ |a arXiv:2410.24129
|2 arXiv
100 1 _ |a Musa, Elaf
|0 P:(DE-H253)PIP1095138
|b 0
|u desy
245 _ _ |a Optics tuning simulations for FCC-ee using Python Accelerator Toolbox
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1736255323_1957131
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a Appears in the proceedings of the 14th International Computational Accelerator Physics Conference (ICAP'24), 2-5 October 2024, Germany
520 _ _ |a The development of ultra-low emittance storage rings, such as the e+/e- Future Circular Collider (FCC-ee) with a circumference of about 90 km, aims to achieve unprecedented luminosity and beam size. One significant challenge is correcting the optics, which becomes increasingly difficult as we target lower emittances. In this paper, we investigate optics correction methods to address these challenges. We examined the impact of arc region magnet alignment errors in the baseline optics for the FCC-ee lattice at Z energy. To establish realistic alignment tolerances, we developed a sequence of correction steps using the Python Accelerator Toolbox (PyAT) to correct the lattice optics, achieve the nominal emittance, Dynamic Aperture (DA), and in the end, the design luminosity. The correction scheme has been recently optimized and better machine performance demonstrated. A comparison was conducted between two optics correction approaches: Linear Optics from Closed Orbits (LOCO) with phase advance + $\eta_x$ and coupling Resonance Driving Terms (RDTs) + $\eta_y$. The latter method demonstrated better performance in achieving the target emittance and enhancing the DA.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a FCCIS - Future Circular Collider Innovation Study (951754)
|0 G:(EU-Grant)951754
|c 951754
|f H2020-INFRADEV-2019-3
|x 1
588 _ _ |a Dataset connected to INSPIRE
693 _ _ |0 EXP:(DE-H253)FCC-20190101
|5 EXP:(DE-H253)FCC-20190101
|e Future Circular Collider
|x 0
700 1 _ |a Agapov, Ilya
|0 P:(DE-H253)PIP1011647
|b 1
|e Corresponding author
|u desy
700 1 _ |a Charles, Tessa
|0 P:(DE-HGF)0
|b 2
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/620135/files/2410.24129v1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/620135/files/2410.24129v1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:620135
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1095138
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1011647
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)MPY-20120731
|k MPY
|l Beschleunigerphysik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MPY-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21