000620135 001__ 620135
000620135 005__ 20250115142529.0
000620135 0247_ $$2INSPIRETeX$$aMusa:2024mqq
000620135 0247_ $$2inspire$$ainspire:2844396
000620135 0247_ $$2arXiv$$aarXiv:2410.24129
000620135 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00052
000620135 037__ $$aPUBDB-2025-00052
000620135 041__ $$aEnglish
000620135 088__ $$2arXiv$$aarXiv:2410.24129
000620135 1001_ $$0P:(DE-H253)PIP1095138$$aMusa, Elaf$$b0$$udesy
000620135 245__ $$aOptics tuning simulations for FCC-ee using Python Accelerator Toolbox
000620135 260__ $$c2024
000620135 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1736255323_1957131
000620135 3367_ $$2ORCID$$aWORKING_PAPER
000620135 3367_ $$028$$2EndNote$$aElectronic Article
000620135 3367_ $$2DRIVER$$apreprint
000620135 3367_ $$2BibTeX$$aARTICLE
000620135 3367_ $$2DataCite$$aOutput Types/Working Paper
000620135 500__ $$aAppears in the proceedings of the 14th International Computational Accelerator Physics Conference (ICAP'24), 2-5 October 2024, Germany
000620135 520__ $$aThe development of ultra-low emittance storage rings, such as the e+/e- Future Circular Collider (FCC-ee) with a circumference of about 90 km, aims to achieve unprecedented luminosity and beam size. One significant challenge is correcting the optics, which becomes increasingly difficult as we target lower emittances. In this paper, we investigate optics correction methods to address these challenges. We examined the impact of arc region magnet alignment errors in the baseline optics for the FCC-ee lattice at Z energy. To establish realistic alignment tolerances, we developed a sequence of correction steps using the Python Accelerator Toolbox (PyAT) to correct the lattice optics, achieve the nominal emittance, Dynamic Aperture (DA), and in the end, the design luminosity. The correction scheme has been recently optimized and better machine performance demonstrated. A comparison was conducted between two optics correction approaches: Linear Optics from Closed Orbits (LOCO) with phase advance + $\eta_x$ and coupling Resonance Driving Terms (RDTs) + $\eta_y$. The latter method demonstrated better performance in achieving the target emittance and enhancing the DA.
000620135 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000620135 536__ $$0G:(EU-Grant)951754$$aFCCIS - Future Circular Collider Innovation Study (951754)$$c951754$$fH2020-INFRADEV-2019-3$$x1
000620135 588__ $$aDataset connected to INSPIRE
000620135 693__ $$0EXP:(DE-H253)FCC-20190101$$5EXP:(DE-H253)FCC-20190101$$eFuture Circular Collider$$x0
000620135 7001_ $$0P:(DE-H253)PIP1011647$$aAgapov, Ilya$$b1$$eCorresponding author$$udesy
000620135 7001_ $$0P:(DE-HGF)0$$aCharles, Tessa$$b2
000620135 8564_ $$uhttps://bib-pubdb1.desy.de/record/620135/files/2410.24129v1.pdf$$yOpenAccess
000620135 8564_ $$uhttps://bib-pubdb1.desy.de/record/620135/files/2410.24129v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000620135 909CO $$ooai:bib-pubdb1.desy.de:620135$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000620135 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095138$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000620135 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011647$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000620135 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000620135 9141_ $$y2024
000620135 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000620135 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000620135 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000620135 9201_ $$0I:(DE-H253)MPY-20120731$$kMPY$$lBeschleunigerphysik$$x0
000620135 980__ $$apreprint
000620135 980__ $$aVDB
000620135 980__ $$aUNRESTRICTED
000620135 980__ $$aI:(DE-H253)MPY-20120731
000620135 9801_ $$aFullTexts