000620108 001__ 620108
000620108 005__ 20250801212048.0
000620108 0247_ $$2doi$$a10.1007/JHEP12(2024)065
000620108 0247_ $$2INSPIRETeX$$aGrojean:2024tcw
000620108 0247_ $$2inspire$$ainspire:2792998
000620108 0247_ $$2ISSN$$a1126-6708
000620108 0247_ $$2ISSN$$a1029-8479
000620108 0247_ $$2ISSN$$a1127-2236
000620108 0247_ $$2arXiv$$aarXiv:2405.20371
000620108 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00026
000620108 0247_ $$2WOS$$aWOS:001376065000001
000620108 0247_ $$2openalex$$aopenalex:W4405321124
000620108 037__ $$aPUBDB-2025-00026
000620108 041__ $$aEnglish
000620108 082__ $$a530
000620108 088__ $$2arXiv$$aarXiv:2405.20371
000620108 088__ $$2CERN$$aCERN-TH-2024-075
000620108 088__ $$2DESY$$aDESY-24-077
000620108 088__ $$2Other$$aHU-EP-24/15-RTG
000620108 1001_ $$0P:(DE-H253)PIP1023796$$aGrojean, Christophe$$b0
000620108 245__ $$aA log story short: running contributions to radiative Higgs decays in the SMEFT
000620108 260__ $$a[Trieste]$$bSISSA$$c2024
000620108 3367_ $$2DRIVER$$aarticle
000620108 3367_ $$2DataCite$$aOutput Types/Journal article
000620108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754048520_3349143
000620108 3367_ $$2BibTeX$$aARTICLE
000620108 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000620108 3367_ $$00$$2EndNote$$aJournal Article
000620108 500__ $$a32 pages + 3 appendices, 5 tables and 6 figures
000620108 520__ $$aWe investigate the renormalization of the radiative decays of the Higgs to two gauge bosons in the Standard Model Effective Field Theory at mass dimension eight. Given that these are loop-level processes, their one-loop renormalization can be phenomenologically important when triggered by operators generated through the tree-level exchange of heavy particles (assuming a weakly coupled UV model). By computing the tree-level matching conditions of all relevant extensions of the Standard Model, we demonstrate that this effect is indeed present in the $h\to \gamma Z$ decay at dimension eight, even though it is absent at dimension six. In contrast, the $h\to gg$ and $h\to \gamma\gamma$ decays can only be renormalized by operators generated by one-loop processes. For UV models with heavy vectors, this conclusion hinges on the specific form of their interaction with massless gauge bosons which is required for perturbative unitarity. We study the quantitative impact of the possible logarithmic enhancement of $h\to \gamma Z$, and we propose an observable to boost the sensitivity to this effect. Given the expected increased precision of next-generation high-energy experiments, this dimension-eight contribution could be large enough to be probed and could therefore give valuable clues about new physics by revealing some of its structural features manifesting first at dimension eight.
000620108 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000620108 536__ $$0G:(GEPRIS)390833306$$aDFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)$$c390833306$$x1
000620108 536__ $$0G:(GEPRIS)417533893$$aGRK 2575 - GRK 2575: Überdenken der Quantenfeldtheorie (417533893)$$c417533893$$x2
000620108 536__ $$0G:(EU-Grant)101086085$$aASYMMETRY - Essential Asymmetries of Nature (101086085)$$c101086085$$fHORIZON-MSCA-2021-SE-01$$x3
000620108 542__ $$2Crossref$$i2024-12-10$$uhttps://creativecommons.org/licenses/by/4.0
000620108 542__ $$2Crossref$$i2024-12-10$$uhttps://creativecommons.org/licenses/by/4.0
000620108 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000620108 650_7 $$2INSPIRE$$anew physics
000620108 650_7 $$2INSPIRE$$aeffective field theory
000620108 650_7 $$2INSPIRE$$aoperator: dimension: 6
000620108 650_7 $$2INSPIRE$$aoperator: dimension: 8
000620108 650_7 $$2INSPIRE$$aoperator: renormalization
000620108 650_7 $$2INSPIRE$$arenormalization group
000620108 650_7 $$2INSPIRE$$aHiggs particle: radiative decay
000620108 650_7 $$2INSPIRE$$aHiggs particle: coupling
000620108 650_7 $$2INSPIRE$$acoupling: energy dependence
000620108 650_7 $$2INSPIRE$$aHiggs particle --> Z0 photon
000620108 650_7 $$2INSPIRE$$aHiggs particle --> photon photon
000620108 650_7 $$2INSPIRE$$aHiggs particle --> gluon gluon
000620108 650_7 $$2autogen$$aAnomalous Higgs Couplings
000620108 650_7 $$2autogen$$aHiggs Properties
000620108 650_7 $$2autogen$$aRenormalization Group
000620108 650_7 $$2autogen$$aSMEFT
000620108 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000620108 7001_ $$0P:(DE-H253)PIP1103603$$aSousa Fialho Guedes, Guilherme Luis de$$b1$$eCorresponding author
000620108 7001_ $$0P:(DE-H253)PIP1098857$$aRoosmale Nepveu, Jasper$$b2
000620108 7001_ $$0P:(DE-HGF)0$$aSalla, Gabriel M.$$b3
000620108 77318 $$2Crossref$$3journal-article$$a10.1007/jhep12(2024)065$$bSpringer Science and Business Media LLC$$d2024-12-10$$n12$$p65$$tJournal of High Energy Physics$$v2024$$x1029-8479$$y2024
000620108 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP12(2024)065$$gVol. 12, no. 12, p. 65$$n12$$p65$$tJournal of high energy physics$$v2024$$x1029-8479$$y2024
000620108 7870_ $$0PUBDB-2024-01884$$aGrojean, Christophe et.al.$$d2024$$iIsParent$$rDESY-24-077 ; arXiv:2405.20371 ; CERN-TH-2024-075 ; HU-EP-24/15-RTG$$tA log story short: running contributions to radiative Higgs decays in the SMEFT
000620108 8564_ $$uhttps://bib-pubdb1.desy.de/record/620108/files/JHEP12%282024%29065.pdf$$yOpenAccess
000620108 8564_ $$uhttps://bib-pubdb1.desy.de/record/620108/files/JHEP12%282024%29065.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000620108 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-25$$eAPC$$jFlatrate$$lSCOAP3
000620108 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-25$$eAPC$$jStorniert$$lSCOAP3$$zDFG OAPK (Projekt)
000620108 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-25$$eAPC$$jZahlung erfolgt$$lSCOAP3$$zDFG OAPK (Projekt)
000620108 909CO $$ooai:bib-pubdb1.desy.de:620108$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000620108 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023796$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000620108 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1103603$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000620108 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098857$$aExternal Institute$$b2$$kExtern
000620108 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000620108 9141_ $$y2024
000620108 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000620108 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000620108 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000620108 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000620108 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000620108 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000620108 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:11Z
000620108 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:11Z
000620108 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000620108 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000620108 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-10-24
000620108 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:11Z
000620108 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000620108 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-16$$wger
000620108 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000620108 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000620108 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000620108 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000620108 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000620108 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000620108 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000620108 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000620108 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000620108 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000620108 980__ $$ajournal
000620108 980__ $$aVDB
000620108 980__ $$aI:(DE-H253)T-20120731
000620108 980__ $$aAPC
000620108 980__ $$aUNRESTRICTED
000620108 9801_ $$aAPC
000620108 9801_ $$aFullTexts
000620108 999C5 $$2Crossref$$uATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
000620108 999C5 $$2Crossref$$uCMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
000620108 999C5 $$2Crossref$$uATLAS collaboration, Search for the Zγ decay mode of new high-mass resonances in pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, Phys. Lett. B 848 (2024) 138394 [arXiv:2309.04364] [INSPIRE].
000620108 999C5 $$2Crossref$$uATLAS and CMS collaborations, Evidence for the Higgs Boson Decay to a Z Boson and a Photon at the LHC, Phys. Rev. Lett. 132 (2024) 021803 [arXiv:2309.03501] [INSPIRE].
000620108 999C5 $$1A Adams$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2006/10/014$$p014 -$$tJHEP$$uA. Adams et al., Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].$$v10$$y2006
000620108 999C5 $$1C Hays$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2019)123$$p123 -$$tJHEP$$uC. Hays, A. Martin, V. Sanz and J. Setford, On the impact of dimension-eight SMEFT operators on Higgs measurements, JHEP 02 (2019) 123 [arXiv:1808.00442] [INSPIRE].$$v02$$y2019
000620108 999C5 $$1G Panico$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2019)090$$p090 -$$tJHEP$$uG. Panico, A. Pomarol and M. Riembau, EFT approach to the electron Electric Dipole Moment at the two-loop level, JHEP 04 (2019) 090 [arXiv:1810.09413] [INSPIRE].$$v04$$y2019
000620108 999C5 $$1C Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.095003$$tPhys. Rev. D$$uC. Zhang and S.-Y. Zhou, Positivity bounds on vector boson scattering at the LHC, Phys. Rev. D 100 (2019) 095003 [arXiv:1808.00010] [INSPIRE].$$v100$$y2019
000620108 999C5 $$1Q Bi$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2019)137$$p137 -$$tJHEP$$uQ. Bi, C. Zhang and S.-Y. Zhou, Positivity constraints on aQGC: carving out the physical parameter space, JHEP 06 (2019) 137 [arXiv:1902.08977] [INSPIRE].$$v06$$y2019
000620108 999C5 $$1S Alioli$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2020.135703$$tPhys. Lett. B$$uS. Alioli, R. Boughezal, E. Mereghetti and F. Petriello, Novel angular dependence in Drell-Yan lepton production via dimension-8 operators, Phys. Lett. B 809 (2020) 135703 [arXiv:2003.11615] [INSPIRE].$$v809$$y2020
000620108 999C5 $$1Q Bonnefoy$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2021)115$$p115 -$$tJHEP$$uQ. Bonnefoy, E. Gendy and C. Grojean, Positivity bounds on Minimal Flavor Violation, JHEP 04 (2021) 115 [arXiv:2011.12855] [INSPIRE].$$v04$$y2021
000620108 999C5 $$1R Boughezal$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.095022$$tPhys. Rev. D$$uR. Boughezal, E. Mereghetti and F. Petriello, Dilepton production in the SMEFT at O(1/Λ4), Phys. Rev. D 104 (2021) 095022 [arXiv:2106.05337] [INSPIRE].$$v104$$y2021
000620108 999C5 $$1M Ardu$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2021)002$$p002 -$$tJHEP$$uM. Ardu and S. Davidson, What is Leading Order for LFV in SMEFT?, JHEP 08 (2021) 002 [arXiv:2103.07212] [INSPIRE].$$v08$$y2021
000620108 999C5 $$1J Ellis$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.035005$$tPhys. Rev. D$$uJ. Ellis, H.-J. He and R.-Q. Xiao, Probing neutral triple gauge couplings at the LHC and future hadron colliders, Phys. Rev. D 107 (2023) 035005 [arXiv:2206.11676] [INSPIRE].$$v107$$y2023
000620108 999C5 $$1T Kim$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2022)124$$p124 -$$tJHEP$$uT. Kim and A. Martin, Monolepton production in SMEFT to $$v09$$y2022
000620108 999C5 $$1S Dawson$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.055012$$tPhys. Rev. D$$uS. Dawson, D. Fontes, S. Homiller and M. Sullivan, Role of dimension-eight operators in an EFT for the 2HDM, Phys. Rev. D 106 (2022) 055012 [arXiv:2205.01561] [INSPIRE].$$v106$$y2022
000620108 999C5 $$1K Asteriadis$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.055038$$tPhys. Rev. D$$uK. Asteriadis, S. Dawson and D. Fontes, Double insertions of SMEFT operators in gluon fusion Higgs boson production, Phys. Rev. D 107 (2023) 055038 [arXiv:2212.03258] [INSPIRE].$$v107$$y2023
000620108 999C5 $$1C Degrande$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2023)149$$p149 -$$tJHEP$$uC. Degrande and H.-L. Li, Impact of dimension-8 SMEFT operators on diboson productions, JHEP 06 (2023) 149 [arXiv:2303.10493] [INSPIRE].$$v06$$y2023
000620108 999C5 $$1M Chala$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.015031$$tPhys. Rev. D$$uM. Chala, Constraints on anomalous dimensions from the positivity of the S matrix, Phys. Rev. D 108 (2023) 015031 [arXiv:2301.09995] [INSPIRE].$$v108$$y2023
000620108 999C5 $$1T Corbett$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.115013$$tPhys. Rev. D$$uT. Corbett et al., Impact of dimension-eight SMEFT operators in the electroweak precision observables and triple gauge couplings analysis in universal SMEFT, Phys. Rev. D 107 (2023) 115013 [arXiv:2304.03305] [INSPIRE].$$v107$$y2023
000620108 999C5 $$1M Chala$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.109.065015$$tPhys. Rev. D$$uM. Chala and X. Li, Positivity restrictions on the mixing of dimension-eight SMEFT operators, Phys. Rev. D 109 (2024) 065015 [arXiv:2309.16611] [INSPIRE].$$v109$$y2024
000620108 999C5 $$2Crossref$$uX. Li, B. Yan and C.-P. Yuan, Lam-Tung relation breaking in Z boson production as a probe of SMEFT effects, arXiv:2405.04069 [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(94)00336-D$$uC. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].
000620108 999C5 $$1MB Einhorn$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2013.08.023$$p556 -$$tNucl. Phys. B$$uM.B. Einhorn and J. Wudka, The Bases of Effective Field Theories, Nucl. Phys. B 876 (2013) 556 [arXiv:1307.0478] [INSPIRE].$$v876$$y2013
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-6444-2$$uS. Das Bakshi, J. Chakrabortty and S.K. Patra, CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory, Eur. Phys. J. C 79 (2019) 21 [arXiv:1808.04403] [INSPIRE].
000620108 999C5 $$1J Fuentes-Martín$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2021)281$$p281 -$$tJHEP$$uJ. Fuentes-Martín et al., SuperTracer: A Calculator of Functional Supertraces for One-Loop EFT Matching, JHEP 04 (2021) 281 [arXiv:2012.08506] [INSPIRE].$$v04$$y2021
000620108 999C5 $$1T Cohen$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.10.5.098$$p098 -$$tSciPost Phys.$$uT. Cohen, X. Lu and Z. Zhang, STrEAMlining EFT Matching, SciPost Phys. 10 (2021) 098 [arXiv:2012.07851] [INSPIRE].$$v10$$y2021
000620108 999C5 $$1A Carmona$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.12.6.198$$p198 -$$tSciPost Phys.$$uA. Carmona, A. Lazopoulos, P. Olgoso and J. Santiago, Matchmakereft: automated tree-level and one-loop matching, SciPost Phys. 12 (2022) 198 [arXiv:2112.10787] [INSPIRE].$$v12$$y2022
000620108 999C5 $$1J Fuentes-Martín$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-023-11726-1$$p662 -$$tEur. Phys. J. C$$uJ. Fuentes-Martín et al., A proof of concept for matchete: an automated tool for matching effective theories, Eur. Phys. J. C 83 (2023) 662 [arXiv:2212.04510] [INSPIRE].$$v83$$y2023
000620108 999C5 $$1G Guedes$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.15.4.143$$p143 -$$tSciPost Phys.$$uG. Guedes, P. Olgoso and J. Santiago, Towards the one loop IR/UV dictionary in the SMEFT: One loop generated operators from new scalars and fermions, SciPost Phys. 15 (2023) 143 [arXiv:2303.16965] [INSPIRE].$$v15$$y2023
000620108 999C5 $$1J de Blas$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2018)109$$p109 -$$tJHEP$$uJ. de Blas, J.C. Criado, M. Pérez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP 03 (2018) 109 [arXiv:1711.10391] [INSPIRE].$$v03$$y2018
000620108 999C5 $$2Crossref$$uA.E. Thomsen, A Partially Fixed Background Field Gauge, arXiv:2404.11640 [INSPIRE].
000620108 999C5 $$1EE Jenkins$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2013)087$$p087 -$$tJHEP$$uE.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].$$v10$$y2013
000620108 999C5 $$1EE Jenkins$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2014)035$$p035 -$$tJHEP$$uE.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].$$v01$$y2014
000620108 999C5 $$1R Alonso$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2014)159$$p159 -$$tJHEP$$uR. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].$$v04$$y2014
000620108 999C5 $$1M Chala$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.11.3.065$$p065 -$$tSciPost Phys.$$uM. Chala, G. Guedes, M. Ramos and J. Santiago, Towards the renormalisation of the Standard Model effective field theory to dimension eight: Bosonic interactions I, SciPost Phys. 11 (2021) 065 [arXiv:2106.05291] [INSPIRE].$$v11$$y2021
000620108 999C5 $$1M Accettulli Huber$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2021)221$$p221 -$$tJHEP$$uM. Accettulli Huber and S. De Angelis, Standard Model EFTs via on-shell methods, JHEP 11 (2021) 221 [arXiv:2108.03669] [INSPIRE].$$v11$$y2021
000620108 999C5 $$1S Das Bakshi$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjp/s13360-022-03194-5$$p973 -$$tEur. Phys. J. Plus$$uS. Das Bakshi, M. Chala, Á. Díaz-Carmona and G. Guedes, Towards the renormalisation of the Standard Model effective field theory to dimension eight: bosonic interactions II, Eur. Phys. J. Plus 137 (2022) 973 [arXiv:2205.03301] [INSPIRE].$$v137$$y2022
000620108 999C5 $$1B Henning$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2016)023$$p023 -$$tJHEP$$uB. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].$$v01$$y2016
000620108 999C5 $$1D Buttazzo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.075021$$tPhys. Rev. D$$uD. Buttazzo and P. Paradisi, Probing the muon g – 2 anomaly with the Higgs boson at a muon collider, Phys. Rev. D 104 (2021) 075021 [arXiv:2012.02769] [INSPIRE].$$v104$$y2021
000620108 999C5 $$1J Aebischer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2021)107$$p107 -$$tJHEP$$uJ. Aebischer et al., Effective field theory interpretation of lepton magnetic and electric dipole moments, JHEP 07 (2021) 107 [arXiv:2102.08954] [INSPIRE].$$v07$$y2021
000620108 999C5 $$1C Grojean$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2013)016$$p016 -$$tJHEP$$uC. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Scaling of Higgs Operators and Γ(h → γγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].$$v04$$y2013
000620108 999C5 $$1J Elias-Miró$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2013)033$$p033 -$$tJHEP$$uJ. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].$$v08$$y2013
000620108 999C5 $$1J Elias-Miró$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2014)019$$p019 -$$tJHEP$$uJ. Elias-Miró, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP 05 (2014) 019 [arXiv:1312.2928] [INSPIRE].$$v05$$y2014
000620108 999C5 $$1C Cheung$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.071601$$tPhys. Rev. Lett.$$uC. Cheung and C.-H. Shen, Nonrenormalization Theorems without Supersymmetry, Phys. Rev. Lett. 115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].$$v115$$y2015
000620108 999C5 $$1N Craig$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2020)086$$p086 -$$tJHEP$$uN. Craig, M. Jiang, Y.-Y. Li and D. Sutherland, Loops and Trees in Generic EFTs, JHEP 08 (2020) 086 [arXiv:2001.00017] [INSPIRE].$$v08$$y2020
000620108 999C5 $$1CW Murphy$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2020)174$$p174 -$$tJHEP$$uC.W. Murphy, Dimension-8 operators in the Standard Model Effective Field Theory, JHEP 10 (2020) 174 [arXiv:2005.00059] [INSPIRE].$$v10$$y2020
000620108 999C5 $$2Crossref$$uS.D. Deser, M.T. Grisaru and H. Pendleton, Proceedings, 13th Brandeis University Summer Institute in Theoretical Physics, Lectures On Elementary Particles and Quantum Field Theory: Waltham, MA, USA, June 15 – July 24 1970, MIT, Cambridge, MA, U.S.A. (1970) [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.46.3529$$uS. Ferrara, M. Porrati and V.L. Telegdi, g = 2 as the natural value of the tree-level gyromagnetic ratio of elementary particles, Phys. Rev. D 46 (1992) 3529 [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/06/045$$uG.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
000620108 999C5 $$1R Contino$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2013)035$$p035 -$$tJHEP$$uR. Contino et al., Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].$$v07$$y2013
000620108 999C5 $$1A Azatov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.88.075019$$tPhys. Rev. D$$uA. Azatov, R. Contino, A. Di Iura and J. Galloway, New Prospects for Higgs Compositeness in h → Zγ, Phys. Rev. D 88 (2013) 075019 [arXiv:1308.2676] [INSPIRE].$$v88$$y2013
000620108 999C5 $$1B Grzadkowski$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2010)085$$p085 -$$tJHEP$$uB. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].$$v10$$y2010
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2021)147$$uT. Corbett, A. Martin and M. Trott, Consistent higher order σ($$ \mathcal{GG} $$ → h), Γ(h → $$ \mathcal{GG} $$) and Γ(h → γγ) in geoSMEFT, JHEP 12 (2021) 147 [arXiv:2107.07470] [INSPIRE].
000620108 999C5 $$1C Hays$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2020)087$$p087 -$$tJHEP$$uC. Hays, A. Helset, A. Martin and M. Trott, Exact SMEFT formulation and expansion to $$v11$$y2020
000620108 999C5 $$1T Corbett$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.13.5.112$$p112 -$$tSciPost Phys.$$uT. Corbett and T. Rasmussen, Higgs decays to two leptons and a photon beyond leading order in the SMEFT, SciPost Phys. 13 (2022) 112 [arXiv:2110.03694] [INSPIRE].$$v13$$y2022
000620108 999C5 $$1J Elias-Miró$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2013)066$$p066 -$$tJHEP$$uJ. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].$$v11$$y2013
000620108 999C5 $$1R Alonso$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2014.10.045$$p95 -$$tPhys. Lett. B$$uR. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without Supersymmetry in the Standard Model Effective Field Theory, Phys. Lett. B 739 (2014) 95 [arXiv:1409.0868] [INSPIRE].$$v739$$y2014
000620108 999C5 $$1J Elias-Miró$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2015.05.056$$p272 -$$tPhys. Lett. B$$uJ. Elias-Miró, J.R. Espinosa and A. Pomarol, One-loop non-renormalization results in EFTs, Phys. Lett. B 747 (2015) 272 [arXiv:1412.7151] [INSPIRE].$$v747$$y2015
000620108 999C5 $$1W Cao$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2023)080$$p080 -$$tJHEP$$uW. Cao, F. Herzog, T. Melia and J. Roosmale Nepveu, Non-linear non-renormalization theorems, JHEP 08 (2023) 080 [arXiv:2303.07391] [INSPIRE].$$v08$$y2023
000620108 999C5 $$1T Cohen$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2021)237$$p237 -$$tJHEP$$uT. Cohen, N. Craig, X. Lu and D. Sutherland, Is SMEFT Enough?, JHEP 03 (2021) 237 [arXiv:2008.08597] [INSPIRE].$$v03$$y2021
000620108 999C5 $$2Crossref$$uE.C.G. Stueckelberg, Interaction energy in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 225 [INSPIRE].
000620108 999C5 $$2Crossref$$uE.C.G. Stueckelberg, Interaction forces in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 299 [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.13.203$$uW. Pauli, Relativistic Field Theories of Elementary Particles, Rev. Mod. Phys. 13 (1941) 203 [INSPIRE].
000620108 999C5 $$1H Ruegg$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X04019755$$p3265 -$$tInt. J. Mod. Phys. A$$uH. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int. J. Mod. Phys. A 19 (2004) 3265 [hep-th/0304245] [INSPIRE].$$v19$$y2004
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(01)00104-6$$uM. Feuillat, J.L. Lucio M. and J. Pestieau, Masses and widths of the ρ±,0(770), Phys. Lett. B 501 (2001) 37 [hep-ph/0010145] [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.012001$$uD. Djukanovic, M.R. Schindler, J. Gegelia and S. Scherer, Quantum electrodynamics for vector mesons, Phys. Rev. Lett. 95 (2005) 012001 [hep-ph/0505180] [INSPIRE].
000620108 999C5 $$1D Djukanovic$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2014.01.001$$p115 -$$tPhys. Lett. B$$uD. Djukanovic, E. Epelbaum, J. Gegelia and U.-G. Meissner, The magnetic moment of the ρ-meson, Phys. Lett. B 730 (2014) 115 [arXiv:1309.3991] [INSPIRE].$$v730$$y2014
000620108 999C5 $$1R Barbieri$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-016-3905-3$$p67 -$$tEur. Phys. J. C$$uR. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].$$v76$$y2016
000620108 999C5 $$1C Biggio$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2016)002$$p002 -$$tJHEP$$uC. Biggio, M. Bordone, L. Di Luzio and G. Ridolfi, Massive vectors and loop observables: the g − 2 case, JHEP 10 (2016) 002 [arXiv:1607.07621] [INSPIRE].$$v10$$y2016
000620108 999C5 $$1N Arkani-Hamed$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2021)070$$p070 -$$tJHEP$$uN. Arkani-Hamed, T.-C. Huang and Y.-T. Huang, Scattering amplitudes for all masses and spins, JHEP 11 (2021) 070 [arXiv:1709.04891] [INSPIRE].$$v11$$y2021
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2020)225$$uV. Gherardi, D. Marzocca and E. Venturini, Matching scalar leptoquarks to the SMEFT at one loop, JHEP 07 (2020) 225 [Erratum ibid. 01 (2021) 006] [arXiv:2003.12525] [INSPIRE].
000620108 999C5 $$1M Chala$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2022)138$$p138 -$$tJHEP$$uM. Chala, Á. Díaz-Carmona and G. Guedes, A Green’s basis for the bosonic SMEFT to dimension 8, JHEP 05 (2022) 138 [arXiv:2112.12724] [INSPIRE].$$v05$$y2022
000620108 999C5 $$1J Ellis$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2023)051$$p051 -$$tJHEP$$uJ. Ellis, K. Mimasu and F. Zampedri, Dimension-8 SMEFT analysis of minimal scalar field extensions of the Standard Model, JHEP 10 (2023) 051 [arXiv:2304.06663] [INSPIRE].$$v10$$y2023
000620108 999C5 $$1F del Aguila$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2010)033$$p033 -$$tJHEP$$uF. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak Limits on General New Vector Bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].$$v09$$y2010
000620108 999C5 $$1J de Blas$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2015)078$$p078 -$$tJHEP$$uJ. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable Effects of General New Scalar Particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].$$v04$$y2015
000620108 999C5 $$1T Corbett$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2021)076$$p076 -$$tJHEP$$uT. Corbett, A. Helset, A. Martin and M. Trott, EWPD in the SMEFT to dimension eight, JHEP 06 (2021) 076 [arXiv:2102.02819] [INSPIRE].$$v06$$y2021
000620108 999C5 $$1U Banerjee$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.055007$$tPhys. Rev. D$$uU. Banerjee et al., Integrating out heavy scalars with modified equations of motion: Matching computation of dimension-eight SMEFT coefficients, Phys. Rev. D 107 (2023) 055007 [arXiv:2210.14761] [INSPIRE].$$v107$$y2023
000620108 999C5 $$1JC Criado$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2019)038$$p038 -$$tJHEP$$uJ.C. Criado and M. Pérez-Victoria, Field redefinitions in effective theories at higher orders, JHEP 03 (2019) 038 [arXiv:1811.09413] [INSPIRE].$$v03$$y2019
000620108 999C5 $$1M Chala$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.105.L111901$$pL111901 -$$tPhys. Rev. D$$uM. Chala and J. Santiago, Positivity bounds in the standard model effective field theory beyond tree level, Phys. Rev. D 105 (2022) L111901 [arXiv:2110.01624] [INSPIRE].$$v105$$y2022
000620108 999C5 $$1RM Fonseca$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.095007$$tPhys. Rev. D$$uR.M. Fonseca, Phenomenology of a gauge boson triplet with hypercharge one, Phys. Rev. D 107 (2023) 095007 [arXiv:2205.12294] [INSPIRE].$$v107$$y2023
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(76)90382-5$$uJ.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].
000620108 999C5 $$2Crossref$$uM.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1070/PU1980v023n08ABEH005019$$uA.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Higgs Particles, Sov. Phys. Usp. 23 (1980) 429 [INSPIRE].
000620108 999C5 $$1A Helset$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2023)063$$p063 -$$tJHEP$$uA. Helset, E.E. Jenkins and A.V. Manohar, Renormalization of the Standard Model Effective Field Theory from geometry, JHEP 02 (2023) 063 [arXiv:2212.03253] [INSPIRE].$$v02$$y2023
000620108 999C5 $$1B Assi$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2023)201$$p201 -$$tJHEP$$uB. Assi et al., Fermion geometry and the renormalization of the Standard Model Effective Field Theory, JHEP 11 (2023) 201 [arXiv:2307.03187] [INSPIRE].$$v11$$y2023
000620108 999C5 $$1S Hamoudou$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2023)157$$p157 -$$tJHEP$$uS. Hamoudou, J. Kumar and D. London, Dimension-8 SMEFT matching conditions for the low-energy effective field theory, JHEP 03 (2023) 157 [arXiv:2207.08856] [INSPIRE].$$v03$$y2023
000620108 999C5 $$1LT Hue$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-6349-0$$p885 -$$tEur. Phys. J. C$$uL.T. Hue et al., General one-loop formulas for decay h → Zγ, Eur. Phys. J. C 78 (2018) 885 [arXiv:1712.05234] [INSPIRE].$$v78$$y2018
000620108 999C5 $$1D Fontes$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2014)043$$p043 -$$tJHEP$$uD. Fontes, J.C. Romão and J.P. Silva, h → Zγ in the complex two Higgs doublet model, JHEP 12 (2014) 043 [arXiv:1408.2534] [INSPIRE].$$v12$$y2014
000620108 999C5 $$2Crossref$$uC. Degrande, K. Hartling and H.E. Logan, Scalar decays to γγ, Zγ, and Wγ in the Georgi-Machacek model, Phys. Rev. D 96 (2017) 075013 [Erratum ibid. 98 (2018) 019901] [arXiv:1708.08753] [INSPIRE].
000620108 999C5 $$1J de Blas$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.129.271801$$tPhys. Rev. Lett.$$uJ. de Blas, M. Pierini, L. Reina and L. Silvestrini, Impact of the Recent Measurements of the Top-Quark and W-Boson Masses on Electroweak Precision Fits, Phys. Rev. Lett. 129 (2022) 271801 [arXiv:2204.04204] [INSPIRE].$$v129$$y2022
000620108 999C5 $$1A Paul$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.013008$$tPhys. Rev. D$$uA. Paul and M. Valli, Violation of custodial symmetry from W-boson mass measurements, Phys. Rev. D 106 (2022) 013008 [arXiv:2204.05267] [INSPIRE].$$v106$$y2022
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(85)90325-6$$uH. Georgi and M. Machacek, Doubly Charged Higgs Bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(85)90700-2$$uM.S. Chanowitz and M. Golden, Higgs Boson Triplets With M (W) = M (Z) cos θω, Phys. Lett. B 165 (1985) 105 [INSPIRE].
000620108 999C5 $$1W Dekens$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2021)127$$p127 -$$tJHEP$$uW. Dekens et al., A low-energy perspective on the minimal left-right symmetric model, JHEP 11 (2021) 127 [arXiv:2107.10852] [INSPIRE].$$v11$$y2021
000620108 999C5 $$1A Dedes$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2019)115$$p115 -$$tJHEP$$uA. Dedes, K. Suxho and L. Trifyllis, The decay h → Zγ in the Standard-Model Effective Field Theory, JHEP 06 (2019) 115 [arXiv:1903.12046] [INSPIRE].$$v06$$y2019
000620108 999C5 $$1J de Blas$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2020)139$$p139 -$$tJHEP$$uJ. de Blas et al., Higgs Boson Studies at Future Particle Colliders, JHEP 01 (2020) 139 [arXiv:1905.03764] [INSPIRE].$$v01$$y2020
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(85)90624-0$$uV. Silveira and A. Zee, Scalar Phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].
000620108 999C5 $$2Crossref$$uB. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.75.037701$$uD. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal Extension of the Standard Model Scalar Sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].
000620108 999C5 $$1C Englert$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2011.08.002$$p298 -$$tPhys. Lett. B$$uC. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].$$v703$$y2011
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(75)90485-X$$uD.A. Ross and M.J.G. Veltman, Neutral Currents in Neutrino Experiments, Nucl. Phys. B 95 (1975) 135 [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.42.1673$$uJ.F. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990) 1673 [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(92)90486-U$$uB.W. Lynn and E. Nardi, Radiative corrections in unconstrained SU(2) × U(1) and the top mass problem, Nucl. Phys. B 381 (1992) 467 [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(97)00785-2$$uT. Blank and W. Hollik, Precision observables in SU(2) × U(1) models with an additional Higgs triplet, Nucl. Phys. B 514 (1998) 113 [hep-ph/9703392] [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2003/06/059$$uJ.R. Forshaw, A. Sabio Vera and B.E. White, Mass bounds in a model with a triplet Higgs, JHEP 06 (2003) 059 [hep-ph/0302256] [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.74.035001$$uM.-C. Chen, S. Dawson and T. Krupovnickas, Higgs triplets and limits from precision measurements, Phys. Rev. D 74 (2006) 035001 [hep-ph/0604102] [INSPIRE].
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-007-0259-x$$uP.H. Chankowski, S. Pokorski and J. Wagner, (Non)decoupling of the Higgs triplet effects, Eur. Phys. J. C 50 (2007) 919 [hep-ph/0605302] [INSPIRE].
000620108 999C5 $$1RS Chivukula$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.77.035001$$tPhys. Rev. D$$uR.S. Chivukula, N.D. Christensen and E.H. Simmons, Low-energy effective theory, unitarity, and non-decoupling behavior in a model with heavy Higgs-triplet fields, Phys. Rev. D 77 (2008) 035001 [arXiv:0712.0546] [INSPIRE].$$v77$$y2008
000620108 999C5 $$1P Bandyopadhyay$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.015025$$tPhys. Rev. D$$uP. Bandyopadhyay and A. Costantini, Obscure Higgs boson at Colliders, Phys. Rev. D 103 (2021) 015025 [arXiv:2010.02597] [INSPIRE].$$v103$$y2021
000620108 999C5 $$1Y Cheng$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2023.116118$$tNucl. Phys. B$$uY. Cheng et al., Electroweak precision tests for triplet scalars, Nucl. Phys. B 989 (2023) 116118 [arXiv:2208.06760] [INSPIRE].$$v989$$y2023
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.79.055024$$uP. Fileviez Pérez, H.H. Patel, M.J. Ramsey-Musolf and K. Wang, Triplet Scalars and Dark Matter at the LHC, Phys. Rev. D 79 (2009) 055024 [arXiv:0811.3957] [INSPIRE].
000620108 999C5 $$1C-W Chiang$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2021)198$$p198 -$$tJHEP$$uC.-W. Chiang et al., Collider Probes of Real Triplet Scalar Dark Matter, JHEP 01 (2021) 198 [arXiv:2003.07867] [INSPIRE].$$v01$$y2021
000620108 999C5 $$1T Corbett$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2018)061$$p061 -$$tJHEP$$uT. Corbett, A. Joglekar, H.-L. Li and J.-H. Yu, Exploring Extended Scalar Sectors with Di-Higgs Signals: A Higgs EFT Perspective, JHEP 05 (2018) 061 [arXiv:1705.02551] [INSPIRE].$$v05$$y2018
000620108 999C5 $$1ME Krauss$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.015041$$tPhys. Rev. D$$uM.E. Krauss and F. Staub, Unitarity constraints in triplet extensions beyond the large s limit, Phys. Rev. D 98 (2018) 015041 [arXiv:1805.07309] [INSPIRE].$$v98$$y2018
000620108 999C5 $$1N Khan$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-5766-4$$p341 -$$tEur. Phys. J. C$$uN. Khan, Exploring the hyperchargeless Higgs triplet model up to the Planck scale, Eur. Phys. J. C 78 (2018) 341 [arXiv:1610.03178] [INSPIRE].$$v78$$y2018
000620108 999C5 $$1P Fileviez Pérez$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2022.137371$$tPhys. Lett. B$$uP. Fileviez Pérez, H.H. Patel and A.D. Plascencia, On the W mass and new Higgs bosons, Phys. Lett. B 833 (2022) 137371 [arXiv:2204.07144] [INSPIRE].$$v833$$y2022
000620108 999C5 $$1S Ashanujjaman$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.L091704$$pL091704 -$$tPhys. Rev. D$$uS. Ashanujjaman et al., SU(2)L triplet scalar as the origin of the 95 GeV excess?, Phys. Rev. D 108 (2023) L091704 [arXiv:2306.15722] [INSPIRE].$$v108$$y2023
000620108 999C5 $$1A Arhrib$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.095005$$tPhys. Rev. D$$uA. Arhrib et al., The Higgs Potential in the Type II Seesaw Model, Phys. Rev. D 84 (2011) 095005 [arXiv:1105.1925] [INSPIRE].$$v84$$y2011
000620108 999C5 $$1P Langacker$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.81.1199$$p1199 -$$tRev. Mod. Phys.$$uP. Langacker, The Physics of Heavy Z′ Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].$$v81$$y2009
000620108 999C5 $$1RM Fonseca$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.035033$$tPhys. Rev. D$$uR.M. Fonseca and M. Hirsch, Gauge vectors and double beta decay, Phys. Rev. D 95 (2017) 035033 [arXiv:1612.04272] [INSPIRE].$$v95$$y2017
000620108 999C5 $$1J de Blas$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2013)166$$p166 -$$tJHEP$$uJ. de Blas, J.M. Lizana and M. Pérez-Victoria, Combining searches of Z’ and W’ bosons, JHEP 01 (2013) 166 [arXiv:1211.2229] [INSPIRE].$$v01$$y2013
000620108 999C5 $$1D Pappadopulo$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2014)060$$p060 -$$tJHEP$$uD. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy Vector Triplets: Bridging Theory and Data, JHEP 09 (2014) 060 [arXiv:1402.4431] [INSPIRE].$$v09$$y2014
000620108 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1201/9780429496448$$uJ.F. Gunion, H.E. Haber, G. Kane and D. Sally, The Higgs Hunter’s Guide, CRC Press (2018) [https://doi.org/10.1201/9780429496448].