| Home > Publications database > Laser-induced tuning of crystallization in tetracene thin films > print |
| 001 | 620088 | ||
| 005 | 20250715171342.0 | ||
| 024 | 7 | _ | |a 10.1039/D4CP02430C |2 doi |
| 024 | 7 | _ | |a 1463-9076 |2 ISSN |
| 024 | 7 | _ | |a 1463-9084 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2025-00017 |2 datacite_doi |
| 024 | 7 | _ | |a 39291341 |2 pmid |
| 024 | 7 | _ | |a WOS:001314296300001 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W4402474864 |
| 037 | _ | _ | |a PUBDB-2025-00017 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Asyuda, Andika |b 0 |
| 245 | _ | _ | |a Laser-induced tuning of crystallization in tetracene thin films |
| 260 | _ | _ | |a Cambridge |c 2024 |b RSC Publ. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1736771506_3689987 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a This study explores how laser light affects the morphology of tetracene films, and it presents novel strategies for improving the creation of thin films used in (opto-)electronic devices. We demonstrate that laser light (532 nm, 1.1 W mm$^{−2}$), applied during tetracene deposition, not only increases grain size but also induces photoalignment. The observed effects arise from enhanced molecular diffusion, resulting from energy transferred by light to the molecules after adsorption, but not from heating the substrate surface underneath. We observe that linearly polarized light promotes photoalignment, while increased crystallite sizes occurs with both linear and circular polarizations. We propose an Ostwald ripening process facilitated by laser illumination, where smaller crystallites get optically heated and dissolve, allowing molecules to surmount step-edge barriers and assemble into larger crystallites. Importantly, the crystallite sizes achieved with laser illumination surpass those attainable by substrate heating alone. The study demonstrates that laser illumination acts as a promising new parameter for controlling thin film properties and is distinct from growth control via substrate temperature and growth rate. Light control also includes the ability for lateral patterning, with implications for the future of molecular materials and their manufacturing technologies. |
| 536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)390648296 - EXC 2025: Matters of Activity. Image Space Material (390648296) |0 G:(GEPRIS)390648296 |c 390648296 |x 1 |
| 542 | _ | _ | |i 2024-09-12 |2 Crossref |u http://creativecommons.org/licenses/by/3.0/ |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |0 EXP:(DE-MLZ)External-20140101 |5 EXP:(DE-MLZ)External-20140101 |e Measurement at external facility |x 0 |
| 700 | 1 | _ | |a Müller, Johannes |b 1 |
| 700 | 1 | _ | |a Gholami, Mohammad Fardin |b 2 |
| 700 | 1 | _ | |a Zykov, Anton |b 3 |
| 700 | 1 | _ | |a Pithan, Linus |0 P:(DE-H253)PIP1017835 |b 4 |
| 700 | 1 | _ | |a Koch, Christoph T. |0 0000-0002-3984-1523 |b 5 |
| 700 | 1 | _ | |a Rabe, Jürgen P. |b 6 |
| 700 | 1 | _ | |a Opitz, Andreas |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
| 700 | 1 | _ | |a Kowarik, Stefan |0 P:(DE-H253)PIP1012003 |b 8 |e Corresponding author |
| 773 | 1 | 8 | |a 10.1039/d4cp02430c |b Royal Society of Chemistry (RSC) |d 2024-01-01 |n 38 |p 24841-24848 |3 journal-article |2 Crossref |t Physical Chemistry Chemical Physics |v 26 |y 2024 |x 1463-9076 |
| 773 | _ | _ | |a 10.1039/D4CP02430C |g Vol. 26, no. 38, p. 24841 - 24848 |0 PERI:(DE-600)1476244-4 |n 38 |p 24841-24848 |t Physical chemistry, chemical physics |v 26 |y 2024 |x 1463-9076 |
| 856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/620088/files/d4cp02430c.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/620088/files/d4cp02430c.pdf?subformat=pdfa |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:620088 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1017835 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1012003 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-09 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-09 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS CHEM CHEM PHYS : 2022 |d 2024-12-09 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-09 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-EC-20120731 |k FS-EC |l FS-Experiment Control |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)FS-EC-20120731 |
| 980 | 1 | _ | |a FullTexts |
| 999 | C | 5 | |a 10.1021/la026851x |9 -- missing cx lookup -- |1 Kim |p 3941 - |2 Crossref |t Langmuir |v 19 |y 2003 |
| 999 | C | 5 | |a 10.1063/1.1629144 |9 -- missing cx lookup -- |1 de Boer |p 4345 - |2 Crossref |t Appl. Phys. Lett. |v 83 |y 2003 |
| 999 | C | 5 | |a 10.1116/1.4931034 |9 -- missing cx lookup -- |1 Shi |p 050604 - |2 Crossref |t J. Vacuum Sci. Technol. B |v 33 |y 2015 |
| 999 | C | 5 | |a 10.1002/adfm.200400278 |9 -- missing cx lookup -- |1 Cicoira |p 375 - |2 Crossref |t Adv. Funct. Mater. |v 15 |y 2005 |
| 999 | C | 5 | |a 10.1002/adfm.200700046 |9 -- missing cx lookup -- |1 Takahashi |p 1623 - |2 Crossref |t Adv. Funct. Mater. |v 17 |y 2007 |
| 999 | C | 5 | |a 10.1063/1.4876600 |9 -- missing cx lookup -- |1 Wu |p 193901 - |2 Crossref |t Appl. Phys. Lett. |v 104 |y 2014 |
| 999 | C | 5 | |a 10.1038/nmat4097 |9 -- missing cx lookup -- |1 Thompson |p 1039 - |2 Crossref |t Nat. Mater. |v 13 |y 2014 |
| 999 | C | 5 | |a 10.1021/nl104202j |9 -- missing cx lookup -- |1 Jadhav |p 1495 - |2 Crossref |t Nano Lett. |v 11 |y 2011 |
| 999 | C | 5 | |a 10.1039/C8MH00853A |9 -- missing cx lookup -- |1 MacQueen |p 1065 - |2 Crossref |t Mater. Horiz. |v 5 |y 2018 |
| 999 | C | 5 | |a 10.1021/acs.jpcc.0c08104 |9 -- missing cx lookup -- |1 Niederhausen |p 27867 - |2 Crossref |t J. Phys. Chem. C |v 124 |y 2020 |
| 999 | C | 5 | |a 10.1039/C7CP03146G |9 -- missing cx lookup -- |1 Liu |p 19386 - |2 Crossref |t Phys. Chem. Chem. Phys. |v 19 |y 2017 |
| 999 | C | 5 | |a 10.1063/1.5079328 |9 -- missing cx lookup -- |1 Alexander |p 040901 - |2 Crossref |t J. Chem. Phys. |v 150 |y 2019 |
| 999 | C | 5 | |a 10.1021/cg500163c |9 -- missing cx lookup -- |1 Ikni |p 3286 - |2 Crossref |t Cryst. Growth Des. |v 14 |y 2014 |
| 999 | C | 5 | |a 10.1021/cg501734w |9 -- missing cx lookup -- |1 Pithan |p 1319 - |2 Crossref |t Crystal Growth Design |v 15 |y 2015 |
| 999 | C | 5 | |a 10.1002/adma.201604382 |9 -- missing cx lookup -- |1 Pithan |p 1604382 - |2 Crossref |t Adv. Mater. |v 29 |y 2017 |
| 999 | C | 5 | |a 10.2478/s11534-011-0096-2 |9 -- missing cx lookup -- |1 Nečas |p 181 - |2 Crossref |t Open Phys. |v 10 |y 2012 |
| 999 | C | 5 | |a 10.1063/1.4971288 |9 -- missing cx lookup -- |1 Nahm |p 052815 - |2 Crossref |t J. Chem. Phys. |v 146 |y 2016 |
| 999 | C | 5 | |a 10.1021/acs.jpcc.6b00963 |9 -- missing cx lookup -- |1 Nahm |p 7183 - |2 Crossref |t J. Phys. Chem. C |v 120 |y 2016 |
| 999 | C | 5 | |a 10.1021/acs.jpcc.7b01369 |9 -- missing cx lookup -- |1 Nahm |p 8464 - |2 Crossref |t J. Phys. Chem. C |v 121 |y 2017 |
| 999 | C | 5 | |a 10.1103/PhysRevB.78.115412 |9 -- missing cx lookup -- |1 Shi |p 115412 - |2 Crossref |t Phys. Rev. B: Condens. Matter Mater. Phys. |v 78 |y 2008 |
| 999 | C | 5 | |a 10.1063/1.5043379 |9 -- missing cx lookup -- |1 Pithan |p 144701 - |2 Crossref |t J. Chem. Phys. |v 149 |y 2018 |
| 999 | C | 5 | |a 10.1021/acs.langmuir.0c01154 |9 -- missing cx lookup -- |1 Niederhausen |p 9099 - |2 Crossref |t Langmuir |v 36 |y 2020 |
| 999 | C | 5 | |a 10.1063/1.2897436 |9 -- missing cx lookup -- |1 Tavazzi |p 154709 - |2 Crossref |t J. Chem. Phys. |v 128 |y 2008 |
| 999 | C | 5 | |a 10.1103/PhysRevLett.92.107402 |9 -- missing cx lookup -- |1 Lim |p 107402 - |2 Crossref |t Phys. Rev. Lett. |v 92 |y 2004 |
| 999 | C | 5 | |a 10.1063/1.3495764 |9 -- missing cx lookup -- |1 Burdett |p 144506 - |2 Crossref |t J. Chem. Phys. |v 133 |y 2010 |
| 999 | C | 5 | |a 10.1021/ar300191w |9 -- missing cx lookup -- |1 Burdett |p 1312 - |2 Crossref |t Acc. Chem. Res. |v 46 |y 2013 |
| 999 | C | 5 | |a 10.1021/acs.jpclett.5b00569 |9 -- missing cx lookup -- |1 Piland |p 1841 - |2 Crossref |t J. Phys. Chem. Lett. |v 6 |y 2015 |
| 999 | C | 5 | |a 10.1021/ja301002g |9 -- missing cx lookup -- |1 Mahesh |p 7227 - |2 Crossref |t J. Am. Chem. Soc. |v 134 |y 2012 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|