001     620088
005     20250715171342.0
024 7 _ |a 10.1039/D4CP02430C
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-00017
|2 datacite_doi
024 7 _ |a 39291341
|2 pmid
024 7 _ |a WOS:001314296300001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4402474864
037 _ _ |a PUBDB-2025-00017
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Asyuda, Andika
|b 0
245 _ _ |a Laser-induced tuning of crystallization in tetracene thin films
260 _ _ |a Cambridge
|c 2024
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736771506_3689987
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study explores how laser light affects the morphology of tetracene films, and it presents novel strategies for improving the creation of thin films used in (opto-)electronic devices. We demonstrate that laser light (532 nm, 1.1 W mm$^{−2}$), applied during tetracene deposition, not only increases grain size but also induces photoalignment. The observed effects arise from enhanced molecular diffusion, resulting from energy transferred by light to the molecules after adsorption, but not from heating the substrate surface underneath. We observe that linearly polarized light promotes photoalignment, while increased crystallite sizes occurs with both linear and circular polarizations. We propose an Ostwald ripening process facilitated by laser illumination, where smaller crystallites get optically heated and dissolve, allowing molecules to surmount step-edge barriers and assemble into larger crystallites. Importantly, the crystallite sizes achieved with laser illumination surpass those attainable by substrate heating alone. The study demonstrates that laser illumination acts as a promising new parameter for controlling thin film properties and is distinct from growth control via substrate temperature and growth rate. Light control also includes the ability for lateral patterning, with implications for the future of molecular materials and their manufacturing technologies.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390648296 - EXC 2025: Matters of Activity. Image Space Material (390648296)
|0 G:(GEPRIS)390648296
|c 390648296
|x 1
542 _ _ |i 2024-09-12
|2 Crossref
|u http://creativecommons.org/licenses/by/3.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Müller, Johannes
|b 1
700 1 _ |a Gholami, Mohammad Fardin
|b 2
700 1 _ |a Zykov, Anton
|b 3
700 1 _ |a Pithan, Linus
|0 P:(DE-H253)PIP1017835
|b 4
700 1 _ |a Koch, Christoph T.
|0 0000-0002-3984-1523
|b 5
700 1 _ |a Rabe, Jürgen P.
|b 6
700 1 _ |a Opitz, Andreas
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Kowarik, Stefan
|0 P:(DE-H253)PIP1012003
|b 8
|e Corresponding author
773 1 8 |a 10.1039/d4cp02430c
|b Royal Society of Chemistry (RSC)
|d 2024-01-01
|n 38
|p 24841-24848
|3 journal-article
|2 Crossref
|t Physical Chemistry Chemical Physics
|v 26
|y 2024
|x 1463-9076
773 _ _ |a 10.1039/D4CP02430C
|g Vol. 26, no. 38, p. 24841 - 24848
|0 PERI:(DE-600)1476244-4
|n 38
|p 24841-24848
|t Physical chemistry, chemical physics
|v 26
|y 2024
|x 1463-9076
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/620088/files/d4cp02430c.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/620088/files/d4cp02430c.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:620088
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1017835
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1012003
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2022
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
920 1 _ |0 I:(DE-H253)FS-EC-20120731
|k FS-EC
|l FS-Experiment Control
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-EC-20120731
980 1 _ |a FullTexts
999 C 5 |a 10.1021/la026851x
|9 -- missing cx lookup --
|1 Kim
|p 3941 -
|2 Crossref
|t Langmuir
|v 19
|y 2003
999 C 5 |a 10.1063/1.1629144
|9 -- missing cx lookup --
|1 de Boer
|p 4345 -
|2 Crossref
|t Appl. Phys. Lett.
|v 83
|y 2003
999 C 5 |a 10.1116/1.4931034
|9 -- missing cx lookup --
|1 Shi
|p 050604 -
|2 Crossref
|t J. Vacuum Sci. Technol. B
|v 33
|y 2015
999 C 5 |a 10.1002/adfm.200400278
|9 -- missing cx lookup --
|1 Cicoira
|p 375 -
|2 Crossref
|t Adv. Funct. Mater.
|v 15
|y 2005
999 C 5 |a 10.1002/adfm.200700046
|9 -- missing cx lookup --
|1 Takahashi
|p 1623 -
|2 Crossref
|t Adv. Funct. Mater.
|v 17
|y 2007
999 C 5 |a 10.1063/1.4876600
|9 -- missing cx lookup --
|1 Wu
|p 193901 -
|2 Crossref
|t Appl. Phys. Lett.
|v 104
|y 2014
999 C 5 |a 10.1038/nmat4097
|9 -- missing cx lookup --
|1 Thompson
|p 1039 -
|2 Crossref
|t Nat. Mater.
|v 13
|y 2014
999 C 5 |a 10.1021/nl104202j
|9 -- missing cx lookup --
|1 Jadhav
|p 1495 -
|2 Crossref
|t Nano Lett.
|v 11
|y 2011
999 C 5 |a 10.1039/C8MH00853A
|9 -- missing cx lookup --
|1 MacQueen
|p 1065 -
|2 Crossref
|t Mater. Horiz.
|v 5
|y 2018
999 C 5 |a 10.1021/acs.jpcc.0c08104
|9 -- missing cx lookup --
|1 Niederhausen
|p 27867 -
|2 Crossref
|t J. Phys. Chem. C
|v 124
|y 2020
999 C 5 |a 10.1039/C7CP03146G
|9 -- missing cx lookup --
|1 Liu
|p 19386 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 19
|y 2017
999 C 5 |a 10.1063/1.5079328
|9 -- missing cx lookup --
|1 Alexander
|p 040901 -
|2 Crossref
|t J. Chem. Phys.
|v 150
|y 2019
999 C 5 |a 10.1021/cg500163c
|9 -- missing cx lookup --
|1 Ikni
|p 3286 -
|2 Crossref
|t Cryst. Growth Des.
|v 14
|y 2014
999 C 5 |a 10.1021/cg501734w
|9 -- missing cx lookup --
|1 Pithan
|p 1319 -
|2 Crossref
|t Crystal Growth Design
|v 15
|y 2015
999 C 5 |a 10.1002/adma.201604382
|9 -- missing cx lookup --
|1 Pithan
|p 1604382 -
|2 Crossref
|t Adv. Mater.
|v 29
|y 2017
999 C 5 |a 10.2478/s11534-011-0096-2
|9 -- missing cx lookup --
|1 Nečas
|p 181 -
|2 Crossref
|t Open Phys.
|v 10
|y 2012
999 C 5 |a 10.1063/1.4971288
|9 -- missing cx lookup --
|1 Nahm
|p 052815 -
|2 Crossref
|t J. Chem. Phys.
|v 146
|y 2016
999 C 5 |a 10.1021/acs.jpcc.6b00963
|9 -- missing cx lookup --
|1 Nahm
|p 7183 -
|2 Crossref
|t J. Phys. Chem. C
|v 120
|y 2016
999 C 5 |a 10.1021/acs.jpcc.7b01369
|9 -- missing cx lookup --
|1 Nahm
|p 8464 -
|2 Crossref
|t J. Phys. Chem. C
|v 121
|y 2017
999 C 5 |a 10.1103/PhysRevB.78.115412
|9 -- missing cx lookup --
|1 Shi
|p 115412 -
|2 Crossref
|t Phys. Rev. B: Condens. Matter Mater. Phys.
|v 78
|y 2008
999 C 5 |a 10.1063/1.5043379
|9 -- missing cx lookup --
|1 Pithan
|p 144701 -
|2 Crossref
|t J. Chem. Phys.
|v 149
|y 2018
999 C 5 |a 10.1021/acs.langmuir.0c01154
|9 -- missing cx lookup --
|1 Niederhausen
|p 9099 -
|2 Crossref
|t Langmuir
|v 36
|y 2020
999 C 5 |a 10.1063/1.2897436
|9 -- missing cx lookup --
|1 Tavazzi
|p 154709 -
|2 Crossref
|t J. Chem. Phys.
|v 128
|y 2008
999 C 5 |a 10.1103/PhysRevLett.92.107402
|9 -- missing cx lookup --
|1 Lim
|p 107402 -
|2 Crossref
|t Phys. Rev. Lett.
|v 92
|y 2004
999 C 5 |a 10.1063/1.3495764
|9 -- missing cx lookup --
|1 Burdett
|p 144506 -
|2 Crossref
|t J. Chem. Phys.
|v 133
|y 2010
999 C 5 |a 10.1021/ar300191w
|9 -- missing cx lookup --
|1 Burdett
|p 1312 -
|2 Crossref
|t Acc. Chem. Res.
|v 46
|y 2013
999 C 5 |a 10.1021/acs.jpclett.5b00569
|9 -- missing cx lookup --
|1 Piland
|p 1841 -
|2 Crossref
|t J. Phys. Chem. Lett.
|v 6
|y 2015
999 C 5 |a 10.1021/ja301002g
|9 -- missing cx lookup --
|1 Mahesh
|p 7227 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 134
|y 2012


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21