000620088 001__ 620088
000620088 005__ 20250715171342.0
000620088 0247_ $$2doi$$a10.1039/D4CP02430C
000620088 0247_ $$2ISSN$$a1463-9076
000620088 0247_ $$2ISSN$$a1463-9084
000620088 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00017
000620088 0247_ $$2pmid$$a39291341
000620088 0247_ $$2WOS$$aWOS:001314296300001
000620088 0247_ $$2openalex$$aopenalex:W4402474864
000620088 037__ $$aPUBDB-2025-00017
000620088 041__ $$aEnglish
000620088 082__ $$a540
000620088 1001_ $$aAsyuda, Andika$$b0
000620088 245__ $$aLaser-induced tuning of crystallization in tetracene thin films
000620088 260__ $$aCambridge$$bRSC Publ.$$c2024
000620088 3367_ $$2DRIVER$$aarticle
000620088 3367_ $$2DataCite$$aOutput Types/Journal article
000620088 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736771506_3689987
000620088 3367_ $$2BibTeX$$aARTICLE
000620088 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000620088 3367_ $$00$$2EndNote$$aJournal Article
000620088 520__ $$aThis study explores how laser light affects the morphology of tetracene films, and it presents novel strategies for improving the creation of thin films used in (opto-)electronic devices. We demonstrate that laser light (532 nm, 1.1 W mm$^{−2}$), applied during tetracene deposition, not only increases grain size but also induces photoalignment. The observed effects arise from enhanced molecular diffusion, resulting from energy transferred by light to the molecules after adsorption, but not from heating the substrate surface underneath. We observe that linearly polarized light promotes photoalignment, while increased crystallite sizes occurs with both linear and circular polarizations. We propose an Ostwald ripening process facilitated by laser illumination, where smaller crystallites get optically heated and dissolve, allowing molecules to surmount step-edge barriers and assemble into larger crystallites. Importantly, the crystallite sizes achieved with laser illumination surpass those attainable by substrate heating alone. The study demonstrates that laser illumination acts as a promising new parameter for controlling thin film properties and is distinct from growth control via substrate temperature and growth rate. Light control also includes the ability for lateral patterning, with implications for the future of molecular materials and their manufacturing technologies.
000620088 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000620088 536__ $$0G:(GEPRIS)390648296$$aDFG project G:(GEPRIS)390648296 - EXC 2025: Matters of Activity. Image Space Material (390648296)$$c390648296$$x1
000620088 542__ $$2Crossref$$i2024-09-12$$uhttp://creativecommons.org/licenses/by/3.0/
000620088 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000620088 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000620088 7001_ $$aMüller, Johannes$$b1
000620088 7001_ $$aGholami, Mohammad Fardin$$b2
000620088 7001_ $$aZykov, Anton$$b3
000620088 7001_ $$0P:(DE-H253)PIP1017835$$aPithan, Linus$$b4
000620088 7001_ $$00000-0002-3984-1523$$aKoch, Christoph T.$$b5
000620088 7001_ $$aRabe, Jürgen P.$$b6
000620088 7001_ $$0P:(DE-HGF)0$$aOpitz, Andreas$$b7$$eCorresponding author
000620088 7001_ $$0P:(DE-H253)PIP1012003$$aKowarik, Stefan$$b8$$eCorresponding author
000620088 77318 $$2Crossref$$3journal-article$$a10.1039/d4cp02430c$$bRoyal Society of Chemistry (RSC)$$d2024-01-01$$n38$$p24841-24848$$tPhysical Chemistry Chemical Physics$$v26$$x1463-9076$$y2024
000620088 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D4CP02430C$$gVol. 26, no. 38, p. 24841 - 24848$$n38$$p24841-24848$$tPhysical chemistry, chemical physics$$v26$$x1463-9076$$y2024
000620088 8564_ $$uhttps://bib-pubdb1.desy.de/record/620088/files/d4cp02430c.pdf$$yOpenAccess
000620088 8564_ $$uhttps://bib-pubdb1.desy.de/record/620088/files/d4cp02430c.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000620088 909CO $$ooai:bib-pubdb1.desy.de:620088$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000620088 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1017835$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000620088 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012003$$aExternal Institute$$b8$$kExtern
000620088 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000620088 9141_ $$y2024
000620088 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000620088 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000620088 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000620088 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000620088 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
000620088 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
000620088 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
000620088 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
000620088 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
000620088 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
000620088 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
000620088 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
000620088 9201_ $$0I:(DE-H253)FS-EC-20120731$$kFS-EC$$lFS-Experiment Control$$x0
000620088 980__ $$ajournal
000620088 980__ $$aVDB
000620088 980__ $$aUNRESTRICTED
000620088 980__ $$aI:(DE-H253)FS-EC-20120731
000620088 9801_ $$aFullTexts
000620088 999C5 $$1Kim$$2Crossref$$9-- missing cx lookup --$$a10.1021/la026851x$$p3941 -$$tLangmuir$$v19$$y2003
000620088 999C5 $$1de Boer$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1629144$$p4345 -$$tAppl. Phys. Lett.$$v83$$y2003
000620088 999C5 $$1Shi$$2Crossref$$9-- missing cx lookup --$$a10.1116/1.4931034$$p050604 -$$tJ. Vacuum Sci. Technol. B$$v33$$y2015
000620088 999C5 $$1Cicoira$$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.200400278$$p375 -$$tAdv. Funct. Mater.$$v15$$y2005
000620088 999C5 $$1Takahashi$$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.200700046$$p1623 -$$tAdv. Funct. Mater.$$v17$$y2007
000620088 999C5 $$1Wu$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4876600$$p193901 -$$tAppl. Phys. Lett.$$v104$$y2014
000620088 999C5 $$1Thompson$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat4097$$p1039 -$$tNat. Mater.$$v13$$y2014
000620088 999C5 $$1Jadhav$$2Crossref$$9-- missing cx lookup --$$a10.1021/nl104202j$$p1495 -$$tNano Lett.$$v11$$y2011
000620088 999C5 $$1MacQueen$$2Crossref$$9-- missing cx lookup --$$a10.1039/C8MH00853A$$p1065 -$$tMater. Horiz.$$v5$$y2018
000620088 999C5 $$1Niederhausen$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcc.0c08104$$p27867 -$$tJ. Phys. Chem. C$$v124$$y2020
000620088 999C5 $$1Liu$$2Crossref$$9-- missing cx lookup --$$a10.1039/C7CP03146G$$p19386 -$$tPhys. Chem. Chem. Phys.$$v19$$y2017
000620088 999C5 $$1Alexander$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5079328$$p040901 -$$tJ. Chem. Phys.$$v150$$y2019
000620088 999C5 $$1Ikni$$2Crossref$$9-- missing cx lookup --$$a10.1021/cg500163c$$p3286 -$$tCryst. Growth Des.$$v14$$y2014
000620088 999C5 $$1Pithan$$2Crossref$$9-- missing cx lookup --$$a10.1021/cg501734w$$p1319 -$$tCrystal Growth Design$$v15$$y2015
000620088 999C5 $$1Pithan$$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201604382$$p1604382 -$$tAdv. Mater.$$v29$$y2017
000620088 999C5 $$1Nečas$$2Crossref$$9-- missing cx lookup --$$a10.2478/s11534-011-0096-2$$p181 -$$tOpen Phys.$$v10$$y2012
000620088 999C5 $$1Nahm$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4971288$$p052815 -$$tJ. Chem. Phys.$$v146$$y2016
000620088 999C5 $$1Nahm$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcc.6b00963$$p7183 -$$tJ. Phys. Chem. C$$v120$$y2016
000620088 999C5 $$1Nahm$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcc.7b01369$$p8464 -$$tJ. Phys. Chem. C$$v121$$y2017
000620088 999C5 $$1Shi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.115412$$p115412 -$$tPhys. Rev. B: Condens. Matter Mater. Phys.$$v78$$y2008
000620088 999C5 $$1Pithan$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5043379$$p144701 -$$tJ. Chem. Phys.$$v149$$y2018
000620088 999C5 $$1Niederhausen$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.0c01154$$p9099 -$$tLangmuir$$v36$$y2020
000620088 999C5 $$1Tavazzi$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2897436$$p154709 -$$tJ. Chem. Phys.$$v128$$y2008
000620088 999C5 $$1Lim$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.107402$$p107402 -$$tPhys. Rev. Lett.$$v92$$y2004
000620088 999C5 $$1Burdett$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3495764$$p144506 -$$tJ. Chem. Phys.$$v133$$y2010
000620088 999C5 $$1Burdett$$2Crossref$$9-- missing cx lookup --$$a10.1021/ar300191w$$p1312 -$$tAcc. Chem. Res.$$v46$$y2013
000620088 999C5 $$1Piland$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.5b00569$$p1841 -$$tJ. Phys. Chem. Lett.$$v6$$y2015
000620088 999C5 $$1Mahesh$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja301002g$$p7227 -$$tJ. Am. Chem. Soc.$$v134$$y2012