| Home > Publications database > Spectro-Microscopy of Individual Pt–Rh Core–Shell Nanoparticles during Competing Oxidation and Alloying > print |
| 001 | 620065 | ||
| 005 | 20251014114614.0 | ||
| 024 | 7 | _ | |a 10.1021/acsnano.5c07668 |2 doi |
| 024 | 7 | _ | |a 1936-0851 |2 ISSN |
| 024 | 7 | _ | |a 1936-086X |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2025-00003 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:181291639 |2 altmetric |
| 024 | 7 | _ | |a pmid:40736140 |2 pmid |
| 024 | 7 | _ | |a openalex:W4412741690 |2 openalex |
| 037 | _ | _ | |a PUBDB-2025-00003 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Dwivedi, Jagrati |0 P:(DE-H253)PIP1098321 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Spectro-Microscopy of Individual Pt–Rh Core–Shell Nanoparticles during Competing Oxidation and Alloying |
| 260 | _ | _ | |a Washington, DC |c 2025 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1757491650_681336 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The surface chemical composition of supported single Pt-Rh core-shell nanoparticles was studied to understand the Rh behavior in oxidizing and reducing gas environments using spectro-microscopy with high spatial resolution. We combined in situ X-ray photoemission electron microscopy with ex situ scanning electron-, atomic force- and scanning Auger-microscopy to distinguish Rh oxidation-reduction, dewetting-sintering and alloying-segregation during the course of the experiment. A more than 20% higher Rh 3d$_{5/2}$ oxide to metal photoemission intensity ratio for the Rh layer on top of the Pt-core was found as compared to the bare strontium titanate (STO) oxide catalyst support in close vicinity, where Rh/RhO$_x$ nanoparticles are forming. At elevated temperatures, Rh diffuses into the Pt particle, and this alloying at the Pt metal surface competes with the Rh oxidation, whereas the Rh/RhO$_x$ nanoparticles on the STO support are observed to sinter under identical oxidizing and temperature environments. A nanoparticle facet dependent analysis of selected Pt-core nanoparticles suggests that Rh oxidation is most advanced on a small nanoparticle with a low coordination top facet that we indexed by electron back scatter diffraction, demonstrating the strength of our correlative approach. |
| 536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
| 536 | _ | _ | |a NEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417) |0 G:(EU-Grant)101007417 |c 101007417 |f H2020-INFRAIA-2020-1 |x 1 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)390540038 - EXC 2008: Unifying Systems in Catalysis "UniSysCat" (390540038) |0 G:(GEPRIS)390540038 |c 390540038 |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |a Nanolab |e DESY NanoLab: Microscopy |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-04-20150101 |5 EXP:(DE-H253)Nanolab-04-20150101 |x 0 |
| 693 | _ | _ | |a Nanolab |e DESY NanoLab: Sample Preparation |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-01-20150101 |5 EXP:(DE-H253)Nanolab-01-20150101 |x 1 |
| 700 | 1 | _ | |a Bachmann, Lydia J. |0 0000-0002-5022-5027 |b 1 |
| 700 | 1 | _ | |a Jeromin, Arno |b 2 |
| 700 | 1 | _ | |a Kulkarni, Satishkumar |b 3 |
| 700 | 1 | _ | |a Noei, Heshmat |0 P:(DE-H253)PIP1018647 |b 4 |
| 700 | 1 | _ | |a Tănase, Liviu C. |0 0000-0002-4177-5676 |b 5 |
| 700 | 1 | _ | |a Tiwari, Aarti |0 0000-0002-8295-9420 |b 6 |
| 700 | 1 | _ | |a de Souza Caldas, Lucas |0 0000-0002-5499-4712 |b 7 |
| 700 | 1 | _ | |a Schmidt, Thomas |0 0000-0003-4389-2080 |b 8 |
| 700 | 1 | _ | |a Cuenya, Beatriz Roldan |0 0000-0002-8025-307X |b 9 |
| 700 | 1 | _ | |a Stierle, Andreas |0 P:(DE-H253)PIP1012873 |b 10 |
| 700 | 1 | _ | |a Keller, Thomas F. |0 P:(DE-H253)PIP1019138 |b 11 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acsnano.5c07668 |g Vol. 19, no. 31, p. 28516 - 28529 |0 PERI:(DE-600)2383064-5 |n 31 |p 28516 - 28529 |t ACS nano |v 19 |y 2025 |x 1936-0851 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/620065/files/HTML-Approval_of_scientific_publication.html |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/620065/files/Institution%20Portal.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/620065/files/PDF-Approval_of_scientific_publication.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/620065/files/Institution%20Portal.pdf?subformat=pdfa |x pdfa |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/620065/files/Manuscript%20pdf.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/620065/files/Manuscript%20pdf.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:620065 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1098321 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1098321 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1018647 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 10 |6 P:(DE-H253)PIP1012873 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 10 |6 P:(DE-H253)PIP1012873 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1019138 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 11 |6 P:(DE-H253)PIP1019138 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ACS NANO : 2022 |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-07 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS NANO : 2022 |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a Helmholtz: American Chemical Society 01/01/2023 |2 APC |0 PC:(DE-HGF)0122 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-NL-20120731 |k FS-NL |l Nanolab |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-H253)FS-NL-20120731 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|