000620065 001__ 620065
000620065 005__ 20250919142048.0
000620065 0247_ $$2doi$$a10.1021/acsnano.5c07668
000620065 0247_ $$2ISSN$$a1936-0851
000620065 0247_ $$2ISSN$$a1936-086X
000620065 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00003
000620065 0247_ $$2altmetric$$aaltmetric:181291639
000620065 0247_ $$2pmid$$apmid:40736140
000620065 037__ $$aPUBDB-2025-00003
000620065 041__ $$aEnglish
000620065 082__ $$a540
000620065 1001_ $$0P:(DE-H253)PIP1098321$$aDwivedi, Jagrati$$b0$$eCorresponding author
000620065 245__ $$aSpectro-Microscopy of Individual Pt–Rh Core–Shell Nanoparticles during Competing Oxidation and Alloying 
000620065 260__ $$aWashington, DC$$bSoc.$$c2025
000620065 3367_ $$2DRIVER$$aarticle
000620065 3367_ $$2DataCite$$aOutput Types/Journal article
000620065 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757491650_681336
000620065 3367_ $$2BibTeX$$aARTICLE
000620065 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000620065 3367_ $$00$$2EndNote$$aJournal Article
000620065 520__ $$aThe surface chemical composition of supported single Pt-Rh core-shell nanoparticles was studied to understand the Rh behavior in oxidizing and reducing gas environments using spectro-microscopy with high spatial resolution. We combined in situ X-ray photoemission electron microscopy with ex situ scanning electron-, atomic force- and scanning Auger-microscopy to distinguish Rh oxidation-reduction, dewetting-sintering and alloying-segregation during the course of the experiment. A more than 20% higher Rh 3d$_{5/2}$ oxide to metal photoemission intensity ratio for the Rh layer on top of the Pt-core was found as compared to the bare strontium titanate (STO) oxide catalyst support in close vicinity, where Rh/RhO$_x$ nanoparticles are forming. At elevated temperatures, Rh diffuses into the Pt particle, and this alloying at the Pt metal surface competes with the Rh oxidation, whereas the Rh/RhO$_x$ nanoparticles on the STO support are observed to sinter under identical oxidizing and temperature environments. A nanoparticle facet dependent analysis of selected Pt-core nanoparticles suggests that Rh oxidation is most advanced on a small nanoparticle with a low coordination top facet that we indexed by electron back scatter diffraction, demonstrating the strength of our correlative approach. 
000620065 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000620065 536__ $$0G:(EU-Grant)101007417$$aNEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417)$$c101007417$$fH2020-INFRAIA-2020-1$$x1
000620065 536__ $$0G:(GEPRIS)390540038$$aDFG project G:(GEPRIS)390540038 - EXC 2008: Unifying Systems in Catalysis "UniSysCat" (390540038)$$c390540038$$x2
000620065 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000620065 693__ $$0EXP:(DE-H253)Nanolab-04-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-04-20150101$$aNanolab$$eDESY NanoLab: Microscopy$$x0
000620065 693__ $$0EXP:(DE-H253)Nanolab-01-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-01-20150101$$aNanolab$$eDESY NanoLab: Sample Preparation$$x1
000620065 7001_ $$00000-0002-5022-5027$$aBachmann, Lydia J.$$b1
000620065 7001_ $$aJeromin, Arno$$b2
000620065 7001_ $$aKulkarni, Satishkumar$$b3
000620065 7001_ $$0P:(DE-H253)PIP1018647$$aNoei, Heshmat$$b4
000620065 7001_ $$00000-0002-4177-5676$$aTănase, Liviu C.$$b5
000620065 7001_ $$00000-0002-8295-9420$$aTiwari, Aarti$$b6
000620065 7001_ $$00000-0002-5499-4712$$ade Souza Caldas, Lucas$$b7
000620065 7001_ $$00000-0003-4389-2080$$aSchmidt, Thomas$$b8
000620065 7001_ $$00000-0002-8025-307X$$aCuenya, Beatriz Roldan$$b9
000620065 7001_ $$0P:(DE-H253)PIP1012873$$aStierle, Andreas$$b10
000620065 7001_ $$0P:(DE-H253)PIP1019138$$aKeller, Thomas F.$$b11$$eCorresponding author
000620065 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.5c07668$$gVol. 19, no. 31, p. 28516 - 28529$$n31$$p28516 - 28529$$tACS nano$$v19$$x1936-0851$$y2025
000620065 8564_ $$uhttps://bib-pubdb1.desy.de/record/620065/files/HTML-Approval_of_scientific_publication.html
000620065 8564_ $$uhttps://bib-pubdb1.desy.de/record/620065/files/Institution%20Portal.pdf
000620065 8564_ $$uhttps://bib-pubdb1.desy.de/record/620065/files/PDF-Approval_of_scientific_publication.pdf
000620065 8564_ $$uhttps://bib-pubdb1.desy.de/record/620065/files/Institution%20Portal.pdf?subformat=pdfa$$xpdfa
000620065 8564_ $$uhttps://bib-pubdb1.desy.de/record/620065/files/Manuscript%20pdf.pdf$$yOpenAccess
000620065 8564_ $$uhttps://bib-pubdb1.desy.de/record/620065/files/Manuscript%20pdf.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000620065 8767_ $$92025-07-17$$d2025-07-17$$eHybrid-OA$$jPublish and Read$$lACS
000620065 8767_ $$92025-07-17$$d2025-07-17$$eHybrid-OA$$jStorniert$$lACS$$zDFG OAPK (Projekt) nicht verrechnet durch V3
000620065 8767_ $$92025-07-17$$d2025-07-17$$eHybrid-OA$$jZahlung erfolgt$$lACS$$zDFG OAPK (Projekt) nicht verrechnet durch V3
000620065 909CO $$ooai:bib-pubdb1.desy.de:620065$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000620065 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098321$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000620065 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098321$$aExternal Institute$$b0$$kExtern
000620065 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018647$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000620065 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012873$$aDeutsches Elektronen-Synchrotron$$b10$$kDESY
000620065 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1012873$$aEuropean XFEL$$b10$$kXFEL.EU
000620065 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019138$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY
000620065 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1019138$$aEuropean XFEL$$b11$$kXFEL.EU
000620065 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000620065 9141_ $$y2025
000620065 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000620065 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000620065 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000620065 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2025-01-07
000620065 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
000620065 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000620065 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000620065 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000620065 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2025-01-07
000620065 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000620065 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000620065 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000620065 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000620065 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000620065 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x0
000620065 980__ $$ajournal
000620065 980__ $$aVDB
000620065 980__ $$aI:(DE-H253)FS-NL-20120731
000620065 980__ $$aAPC
000620065 980__ $$aUNRESTRICTED
000620065 9801_ $$aAPC
000620065 9801_ $$aFullTexts