Home > Publications database > Reactive vapor-phase dealloying-alloying turns oxides into sustainable bulk nano-structured porous alloys > print |
001 | 620005 | ||
005 | 20250723173208.0 | ||
024 | 7 | _ | |a 10.1126/sciadv.ads2140 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-08088 |2 datacite_doi |
024 | 7 | _ | |a altmetric:172226218 |2 altmetric |
024 | 7 | _ | |a pmid:39693426 |2 pmid |
024 | 7 | _ | |a WOS:001380638700004 |2 WOS |
024 | 7 | _ | |a openalex:W4405517032 |2 openalex |
037 | _ | _ | |a PUBDB-2024-08088 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Wei, Shaolou |0 P:(DE-H253)PIP1105115 |b 0 |
245 | _ | _ | |a Reactive vapor-phase dealloying-alloying turns oxides into sustainable bulk nano-structured porous alloys |
260 | _ | _ | |a Washington, DC [u.a.] |c 2024 |b Assoc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738163536_3341515 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a For millennia, alloying has been the greatest gift from metallurgy to humankind: a process of mixing elements, propelling our society from the Bronze Age to the Space Age. Dealloying, by contrast, acts like a penalty: a corrosive counteracting process of selectively removing elements from alloys or compounds, degrading their structural integrity over time. We show that when these two opposite metallurgical processes meet in a reactive vapor environment, profound sustainable alloy design opportunities become accessible, enabling bulk nanostructured porous alloys directly from oxides, with zero carbon footprint. We introduce thermodynamically well-grounded treasure maps that turn the intuitive opposition between alloying and dealloying into harmony, facilitating a quantitative approach to navigate synthesis in such an immense design space. We demonstrate this alloy design paradigm by synthesizing nanostructured Fe-Ni-N porous martensitic alloys fully from oxides in a single solid-state process step and substantiating the critical kinetic processes responsible for the desired microstructure. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a FS-Proposal: I-20230183 (I-20230183) |0 G:(DE-H253)I-20230183 |c I-20230183 |x 1 |
536 | _ | _ | |a FS-Proposal: I-20231121 (I-20231121) |0 G:(DE-H253)I-20231121 |c I-20231121 |x 2 |
536 | _ | _ | |a FS-Proposal: I-20231001 (I-20231001) |0 G:(DE-H253)I-20231001 |c I-20231001 |x 3 |
536 | _ | _ | |a ROC - Reducing Iron Oxides without Carbon by using Hydrogen-Plasma (101054368) |0 G:(EU-Grant)101054368 |c 101054368 |f ERC-2021-ADG |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P02.1 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P02.1-20150101 |6 EXP:(DE-H253)P-P02.1-20150101 |x 0 |
693 | _ | _ | |a PETRA III |f PETRA Beamline P21.2 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P21.2-20150101 |6 EXP:(DE-H253)P-P21.2-20150101 |x 1 |
700 | 1 | _ | |a Ma, Yan |0 P:(DE-H253)PIP1024188 |b 1 |
700 | 1 | _ | |a Raabe, Dierk |0 P:(DE-H253)PIP1010873 |b 2 |e Corresponding author |
773 | 1 | 8 | |a 10.1126/sciadv.ads2140 |b American Association for the Advancement of Science (AAAS) |d 2024-12-20 |n 51 |3 journal-article |2 Crossref |t Science Advances |v 10 |y 2024 |x 2375-2548 |
773 | _ | _ | |a 10.1126/sciadv.ads2140 |g Vol. 10, no. 51, p. eads2140 |0 PERI:(DE-600)2810933-8 |n 51 |p eads2140 |t Science advances |v 10 |y 2024 |x 2375-2548 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/620005/files/sciadv.ads2140.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/620005/files/sciadv.ads2140.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:620005 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1105115 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1024188 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1010873 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-28 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-28 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI ADV : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-05-14T07:33:42Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-05-14T07:33:42Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-05-14T07:33:42Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SCI ADV : 2022 |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1002/zaac.19211180127 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/35068529 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/sciadv.aas9459 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.actamat.2021.117424 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1557/mrs.2017.299 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.chemrev.2c00799 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41586-024-07932-w |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/cr60161a001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0378-7753(93)01789-K |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41467-022-32826-8 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1111/jace.19441 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ijhydene.2023.08.254 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.actamat.2021.116933 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1146/annurev-matsci-070115-031739 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/978-3-030-60056-3 |9 -- missing cx lookup -- |2 Crossref |u E. J. Mittemeijer Fundamentals of Materials Science (Springer 2021). |
999 | C | 5 | |2 Crossref |u E. J. Mittemeijer M. A. J. Somers Thermochemical Surface Engineering of Steels: Improving Materials Performance (Elsevier 2014). |
999 | C | 5 | |a 10.2355/isijinternational.55.736 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.scriptamat.2022.115063 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nmat3391 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |2 Crossref |u C. H. P. Lupis Chemical Thermodynamics of Materials (Prentice Hall 1993). |
999 | C | 5 | |a 10.1007/s40831-021-00392-w |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 Ma Y. |y 2023 |2 Crossref |u Y. Ma, J. W. Bae, S. Kim, M. Jovičević-Klug, K. Li, D. Vogel, D. Ponge, M. Rohwerder, B. Gault, D. Raabe, Reducing iron oxide with ammonia: A sustainable path to green steel. Adv. Sci. 2300111, 1–7 (2023). |
999 | C | 5 | |2 Crossref |u R. K. Pathria P. D. Beale Statistical Mechanics (Elsevier ed. 3 2011). |
999 | C | 5 | |a 10.1016/0021-9517(76)90395-X |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1749562 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0305-4608/16/3/015 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF01349680 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.actamat.2018.01.005 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41467-017-02167-y |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/B978-075066385-4/50009-1 |9 -- missing cx lookup -- |2 Crossref |u S. J. L. Kang Sintering: Densification Grain Growth and Microstructure (Elsevier 2005). |
999 | C | 5 | |a 10.1080/00224065.1993.11979431 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0001-6160(85)90214-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1533/9780857096111.4.557 |9 -- missing cx lookup -- |2 Crossref |u S. Zaefferer N. N. Elhami P. Konijnenberg “Electron backscatter diffraction (EBSD) techniques for studying phase transformations in steels” in Phase Transformations in Steels E. Pereloma D. V. Edmonds Eds. (Woodhead Publishing Limited 2012). |
999 | C | 5 | |a 10.1016/0956-7151(94)90136-8 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0001-6160(59)90095-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1093/acprof:oso/9780198516002.001.0001 |9 -- missing cx lookup -- |2 Crossref |u A. Argon Strengthening Mechanisms in Crystal Plasticity (Oxford Univ. Press 2007) vol. 9780198516. |
999 | C | 5 | |a 10.1007/s11661-018-4999-z |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0001-6160(67)90045-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S1359-6454(00)00102-6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s11661-002-0351-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.cossms.2014.06.002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1557/s43578-022-00818-5 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1107/S0021889813003531 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/adma.202406382 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1080/01431160412331269698 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41592-019-0582-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1093/mam/ozae006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0364-5916(91)90030-N |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |2 Crossref |u W. F. Gale T. C. Totemeier Smithells Metals Reference Book (Elsevier 2003). |
999 | C | 5 | |a 10.1016/j.apsusc.2021.149960 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/jp045655r |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.jpcc.8b11279 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.actamat.2013.07.024 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.apsusc.2017.01.031 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevMaterials.6.096001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.apcata.2019.02.019 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.92.054103 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjb/e2008-00303-x |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.2320/matertrans.46.2817 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1201/b17118 |9 -- missing cx lookup -- |2 Crossref |u W. M. Haynes CRC Handbook of Chemistry and Physics Online (CRC Press ed. 95 2014). |
999 | C | 5 | |a 10.1007/s11665-014-1257-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF00898530 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S1359-6454(01)00260-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/978-1-4899-5880-8 |9 -- missing cx lookup -- |2 Crossref |u H. J. Goldschmidt Interstitial Alloys (Springer New York 1967). |
999 | C | 5 | |a 10.1016/0001-6160(83)90128-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1179/1743284710Y.0000000014 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/cctc.201800398 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s11665-016-2048-x |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF02665509 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1017/9781108641449 |9 -- missing cx lookup -- |2 Crossref |u B. Fultz Phase Transitions in Materials (Cambridge Univ. Press 2020). |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|