000620005 001__ 620005
000620005 005__ 20250723173208.0
000620005 0247_ $$2doi$$a10.1126/sciadv.ads2140
000620005 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-08088
000620005 0247_ $$2altmetric$$aaltmetric:172226218
000620005 0247_ $$2pmid$$apmid:39693426
000620005 0247_ $$2WOS$$aWOS:001380638700004
000620005 0247_ $$2openalex$$aopenalex:W4405517032
000620005 037__ $$aPUBDB-2024-08088
000620005 041__ $$aEnglish
000620005 082__ $$a500
000620005 1001_ $$0P:(DE-H253)PIP1105115$$aWei, Shaolou$$b0
000620005 245__ $$aReactive vapor-phase dealloying-alloying turns oxides into sustainable bulk nano-structured porous alloys
000620005 260__ $$aWashington, DC [u.a.]$$bAssoc.$$c2024
000620005 3367_ $$2DRIVER$$aarticle
000620005 3367_ $$2DataCite$$aOutput Types/Journal article
000620005 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738163536_3341515
000620005 3367_ $$2BibTeX$$aARTICLE
000620005 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000620005 3367_ $$00$$2EndNote$$aJournal Article
000620005 520__ $$aFor millennia, alloying has been the greatest gift from metallurgy to humankind: a process of mixing elements, propelling our society from the Bronze Age to the Space Age. Dealloying, by contrast, acts like a penalty: a corrosive counteracting process of selectively removing elements from alloys or compounds, degrading their structural integrity over time. We show that when these two opposite metallurgical processes meet in a reactive vapor environment, profound sustainable alloy design opportunities become accessible, enabling bulk nanostructured porous alloys directly from oxides, with zero carbon footprint. We introduce thermodynamically well-grounded treasure maps that turn the intuitive opposition between alloying and dealloying into harmony, facilitating a quantitative approach to navigate synthesis in such an immense design space. We demonstrate this alloy design paradigm by synthesizing nanostructured Fe-Ni-N porous martensitic alloys fully from oxides in a single solid-state process step and substantiating the critical kinetic processes responsible for the desired microstructure. 
000620005 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000620005 536__ $$0G:(DE-H253)I-20230183$$aFS-Proposal: I-20230183 (I-20230183)$$cI-20230183$$x1
000620005 536__ $$0G:(DE-H253)I-20231121$$aFS-Proposal: I-20231121 (I-20231121)$$cI-20231121$$x2
000620005 536__ $$0G:(DE-H253)I-20231001$$aFS-Proposal: I-20231001 (I-20231001)$$cI-20231001$$x3
000620005 536__ $$0G:(EU-Grant)101054368$$aROC - Reducing Iron Oxides without Carbon by using Hydrogen-Plasma (101054368)$$c101054368$$fERC-2021-ADG$$x4
000620005 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000620005 693__ $$0EXP:(DE-H253)P-P02.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P02.1-20150101$$aPETRA III$$fPETRA Beamline P02.1$$x0
000620005 693__ $$0EXP:(DE-H253)P-P21.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.2-20150101$$aPETRA III$$fPETRA Beamline P21.2$$x1
000620005 7001_ $$0P:(DE-H253)PIP1024188$$aMa, Yan$$b1
000620005 7001_ $$0P:(DE-H253)PIP1010873$$aRaabe, Dierk$$b2$$eCorresponding author
000620005 77318 $$2Crossref$$3journal-article$$a10.1126/sciadv.ads2140$$bAmerican Association for the Advancement of Science (AAAS)$$d2024-12-20$$n51$$tScience Advances$$v10$$x2375-2548$$y2024
000620005 773__ $$0PERI:(DE-600)2810933-8$$a10.1126/sciadv.ads2140$$gVol. 10, no. 51, p. eads2140$$n51$$peads2140$$tScience advances$$v10$$x2375-2548$$y2024
000620005 8564_ $$uhttps://bib-pubdb1.desy.de/record/620005/files/sciadv.ads2140.pdf$$yOpenAccess
000620005 8564_ $$uhttps://bib-pubdb1.desy.de/record/620005/files/sciadv.ads2140.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000620005 909CO $$ooai:bib-pubdb1.desy.de:620005$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000620005 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105115$$aExternal Institute$$b0$$kExtern
000620005 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1024188$$aExternal Institute$$b1$$kExtern
000620005 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010873$$aExternal Institute$$b2$$kExtern
000620005 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000620005 9141_ $$y2024
000620005 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
000620005 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000620005 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
000620005 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-28
000620005 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000620005 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-28
000620005 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI ADV : 2022$$d2024-12-18
000620005 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000620005 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000620005 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-05-14T07:33:42Z
000620005 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-05-14T07:33:42Z
000620005 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-05-14T07:33:42Z
000620005 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000620005 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000620005 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000620005 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-18
000620005 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000620005 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000620005 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSCI ADV : 2022$$d2024-12-18
000620005 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000620005 980__ $$ajournal
000620005 980__ $$aVDB
000620005 980__ $$aUNRESTRICTED
000620005 980__ $$aI:(DE-H253)HAS-User-20120731
000620005 9801_ $$aFullTexts
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/zaac.19211180127
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/35068529
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.aas9459
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2021.117424
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1557/mrs.2017.299
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.2c00799
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-024-07932-w
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cr60161a001
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0378-7753(93)01789-K
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-32826-8
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/jace.19441
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijhydene.2023.08.254
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2021.116933
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-matsci-070115-031739
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-030-60056-3$$uE. J. Mittemeijer Fundamentals of Materials Science (Springer 2021).
000620005 999C5 $$2Crossref$$uE. J. Mittemeijer M. A. J. Somers Thermochemical Surface Engineering of Steels: Improving Materials Performance (Elsevier 2014).
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2355/isijinternational.55.736
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.scriptamat.2022.115063
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3391
000620005 999C5 $$2Crossref$$uC. H. P. Lupis Chemical Thermodynamics of Materials (Prentice Hall 1993).
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s40831-021-00392-w
000620005 999C5 $$1Ma Y.$$2Crossref$$uY. Ma, J. W. Bae, S. Kim, M. Jovičević-Klug, K. Li, D. Vogel, D. Ponge, M. Rohwerder, B. Gault, D. Raabe, Reducing iron oxide with ammonia: A sustainable path to green steel. Adv. Sci. 2300111, 1–7 (2023).$$y2023
000620005 999C5 $$2Crossref$$uR. K. Pathria P. D. Beale Statistical Mechanics (Elsevier ed. 3 2011).
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0021-9517(76)90395-X
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1749562
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4608/16/3/015
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01349680
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2018.01.005
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-02167-y
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/B978-075066385-4/50009-1$$uS. J. L. Kang Sintering: Densification Grain Growth and Microstructure (Elsevier 2005).
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00224065.1993.11979431
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0001-6160(85)90214-7
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1533/9780857096111.4.557$$uS. Zaefferer N. N. Elhami P. Konijnenberg “Electron backscatter diffraction (EBSD) techniques for studying phase transformations in steels” in Phase Transformations in Steels E. Pereloma D. V. Edmonds Eds. (Woodhead Publishing Limited 2012).
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0956-7151(94)90136-8
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0001-6160(59)90095-1
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/acprof:oso/9780198516002.001.0001$$uA. Argon Strengthening Mechanisms in Crystal Plasticity (Oxford Univ. Press 2007) vol. 9780198516.
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11661-018-4999-z
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0001-6160(67)90045-4
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S1359-6454(00)00102-6
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11661-002-0351-7
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cossms.2014.06.002
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1557/s43578-022-00818-5
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889813003531
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.202406382
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/01431160412331269698
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-019-0582-9
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/mam/ozae006
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0364-5916(91)90030-N
000620005 999C5 $$2Crossref$$uW. F. Gale T. C. Totemeier Smithells Metals Reference Book (Elsevier 2003).
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apsusc.2021.149960
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp045655r
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcc.8b11279
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2013.07.024
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apsusc.2017.01.031
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.6.096001
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apcata.2019.02.019
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.054103
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2008-00303-x
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2320/matertrans.46.2817
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1201/b17118$$uW. M. Haynes CRC Handbook of Chemistry and Physics Online (CRC Press ed. 95 2014).
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11665-014-1257-4
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00898530
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S1359-6454(01)00260-9
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4899-5880-8$$uH. J. Goldschmidt Interstitial Alloys (Springer New York 1967).
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0001-6160(83)90128-1
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1179/1743284710Y.0000000014
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/cctc.201800398
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11665-016-2048-x
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02665509
000620005 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/9781108641449$$uB. Fultz Phase Transitions in Materials (Cambridge Univ. Press 2020).