Home > Publications database > Reversible hydrogen storage in multilayer graphane: Lattice dynamics, compressibility, and heat capacity studies > print |
001 | 619975 | ||
005 | 20250723105704.0 | ||
024 | 7 | _ | |a 10.1016/j.matchemphys.2024.130232 |2 doi |
024 | 7 | _ | |a 0254-0584 |2 ISSN |
024 | 7 | _ | |a 1879-3312 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-08058 |2 datacite_doi |
024 | 7 | _ | |a WOS:001381290800001 |2 WOS |
024 | 7 | _ | |a openalex:W4404959551 |2 openalex |
037 | _ | _ | |a PUBDB-2024-08058 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Yartys, Volodymyr A. |0 0000-0003-4207-9127 |b 0 |
245 | _ | _ | |a Reversible hydrogen storage in multilayer graphane: Lattice dynamics, compressibility, and heat capacity studies |
260 | _ | _ | |a New York, NY [u.a.] |c 2025 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738057349_2497461 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Multilayer graphane (hydride of graphite) is a crystalline hydrocarbon of composition CH, which can be synthesized from graphite and molecular hydrogen at pressures above 2 GPa [V.E. Antonov et al. Carbon 100 (2016) 465]. Using X-ray diffraction, this compound was tentatively identified as the “graphane II” phase of 3D-graphane predicted by ab initio calculations [X.-D. Wen et al. PNAS 108 (2011) 6833] and consisting of layers of 2D-graphane in the “chair” conformation. When heated in a vacuum, the compound does not form any intermediate hydrocarbons and reversibly decomposes back into graphite and hydrogen at 770–920 K. In the present work, almost single-phase samples of graphite hydride and deuteride were synthesized at 7.4 GPa and 870 K. Their investigation by inelastic neutron scattering supplemented by ab initio calculations gave spectra g(E) of the phonon density of states with a gap of about 15 meV at approx. 100 meV, which is a unique identifier for the chair form of graphane. The equation of state V(P) of the hydride was studied at room temperature and hydrogen pressures up to 53 GPa by synchrotron X-ray diffraction in a diamond anvil cell. The graphane II phase did not react with the surrounding hydrogen and did not undergo any phase transformations upon the compression and after heating to 1500 K at 53 GPa. The high thermal and pressure stability of this exotic phase makes it an important part of the C–H system. The obtained g(E) spectra of graphite hydride and deuteride were used to calculate temperature dependences of their heat capacity. Measurements of the heat capacity at temperatures 120–673 K confirmed the good accuracy of these calculations. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a FS-Proposal: I-20220830 (I-20220830) |0 G:(DE-H253)I-20220830 |c I-20220830 |x 1 |
536 | _ | _ | |a MetElOne - The Metallization Conditions of Element One (948895) |0 G:(EU-Grant)948895 |c 948895 |f ERC-2020-STG |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P02.2 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P02.2-20150101 |6 EXP:(DE-H253)P-P02.2-20150101 |x 0 |
700 | 1 | _ | |a Antonov, Vladimir E. |0 P:(DE-H253)PIP1099635 |b 1 |
700 | 1 | _ | |a Bulychev, Boris M. |b 2 |
700 | 1 | _ | |a Efimchenko, Vadim S. |0 0000-0002-4791-1499 |b 3 |
700 | 1 | _ | |a Kulakov, Valery I. |b 4 |
700 | 1 | _ | |a Kuzovnikov, Mikhail A. |0 P:(DE-H253)PIP1100652 |b 5 |
700 | 1 | _ | |a Howie, Ross T. |b 6 |
700 | 1 | _ | |a Shuttleworth, Hannah A. |b 7 |
700 | 1 | _ | |a Holin, Mylaine |0 P:(DE-H253)PIP1104804 |b 8 |
700 | 1 | _ | |a Rae, Rebecca |b 9 |
700 | 1 | _ | |a Stone, Matthew B. |0 0000-0001-7884-9715 |b 10 |
700 | 1 | _ | |a Tarasov, Boris P. |b 11 |
700 | 1 | _ | |a Usmanov, Radion I. |0 0009-0009-3700-8907 |b 12 |
700 | 1 | _ | |a Kolesnikov, Alexander I. |0 P:(DE-HGF)0 |b 13 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.matchemphys.2024.130232 |g Vol. 332, p. 130232 - |0 PERI:(DE-600)1491959-X |p 130232 |t Materials chemistry and physics |v 332 |y 2025 |x 0254-0584 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619975/files/CH%20yartys2024.pdf |
856 | 4 | _ | |y Published on 2024-02-15. Available in OpenAccess from 2025-02-15. |u https://bib-pubdb1.desy.de/record/619975/files/GRAPHANE%20CHD%2010-20-2024_final.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/619975/files/CH%20yartys2024.pdf?subformat=pdfa |
856 | 4 | _ | |y Published on 2024-02-15. Available in OpenAccess from 2025-02-15. |x pdfa |u https://bib-pubdb1.desy.de/record/619975/files/GRAPHANE%20CHD%2010-20-2024_final.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:619975 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1099635 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 1 |6 P:(DE-H253)PIP1099635 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1100652 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1104804 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-18 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MATER CHEM PHYS : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|