Home > Publications database > A proteome-wide structural systems approach reveals insights into protein families of all human herpesviruses > print |
001 | 619956 | ||
005 | 20250723173151.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-54668-2 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-08047 |2 datacite_doi |
024 | 7 | _ | |a altmetric:171128939 |2 altmetric |
024 | 7 | _ | |a pmid:39592652 |2 pmid |
024 | 7 | _ | |a WOS:001364813000027 |2 WOS |
024 | 7 | _ | |a openalex:W4404723969 |2 openalex |
037 | _ | _ | |a PUBDB-2024-08047 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Soh, Timothy K. |b 0 |
245 | _ | _ | |a A proteome-wide structural systems approach reveals insights into protein families of all human herpesviruses |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738144636_3341508 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Structure predictions have become invaluable tools, but viral proteins are absent from the EMBL/DeepMind AlphaFold database. Here, we provide proteome-wide structure predictions for all nine human herpesviruses and analyze them in depth with explicit scoring thresholds. By clustering these predictions into structural similarity groups, we identified new families, such as the HCMV UL112-113 cluster, which is conserved in alpha- and betaherpesviruses. A domain-level search found protein families consisting of subgroups with varying numbers of duplicated folds. Using large-scale structural similarity searches, we identified viral proteins with cellular folds, such as the HSV-1 US2 cluster possessing dihydrofolate reductase folds and the EBV BMRF2 cluster that might have emerged from cellular equilibrative nucleoside transporters. Our HerpesFolds database is available at https://www.herpesfolds.org/herpesfolds and displays all models and clusters through an interactive web interface. Here, we show that system-wide structure predictions can reveal homology between viral species and identify potential protein functions. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)390874280 - EXC 2155: RESIST - Resolving Infection Susceptibility (390874280) |0 G:(GEPRIS)390874280 |c 390874280 |x 1 |
542 | _ | _ | |i 2024-11-26 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-11-26 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Ognibene, Sofia |b 1 |
700 | 1 | _ | |a Sanders, Saskia |b 2 |
700 | 1 | _ | |a Schäper, Robin |b 3 |
700 | 1 | _ | |a Kaufer, Benedikt B. |0 0000-0003-1328-2695 |b 4 |
700 | 1 | _ | |a Bosse, Jens Bernhard |0 P:(DE-H253)PIP1082972 |b 5 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s41467-024-54668-2 |b Springer Science and Business Media LLC |d 2024-11-26 |n 1 |p 10230 |3 journal-article |2 Crossref |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
773 | _ | _ | |a 10.1038/s41467-024-54668-2 |g Vol. 15, no. 1, p. 10230 |0 PERI:(DE-600)2553671-0 |n 1 |p 10230 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/619956/files/s41467-024-54668-2.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/619956/files/s41467-024-54668-2.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:619956 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 5 |6 P:(DE-H253)PIP1082972 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1082972 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-MHH-JB-20210520 |k CSSB-MHH-JB |l CSSB-MHH-JB |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CSSB-MHH-JB-20210520 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/s41586-021-03819-2 |9 -- missing cx lookup -- |1 J Jumper |p 583 - |2 Crossref |u Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). |t Nature |v 596 |y 2021 |
999 | C | 5 | |a 10.1126/science.abj8754 |9 -- missing cx lookup -- |1 M Baek |p 871 - |2 Crossref |u Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021). |t Science |v 373 |y 2021 |
999 | C | 5 | |a 10.1038/s41594-022-00849-w |9 -- missing cx lookup -- |1 M Akdel |p 1056 - |2 Crossref |u Akdel, M. et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 29, 1056–1067 (2022). |t Nat. Struct. Mol. Biol. |v 29 |y 2022 |
999 | C | 5 | |a 10.1016/j.virol.2019.01.005 |9 -- missing cx lookup -- |1 CM Zmasek |p 29 - |2 Crossref |u Zmasek, C. M., Knipe, D. M., Pellett, P. E. & Scheuermann, R. H. Classification of human Herpesviridae proteins using Domain-architecture Aware Inference of Orthologs (DAIO). Virology 529, 29–42 (2019). |t Virology |v 529 |y 2019 |
999 | C | 5 | |a 10.1038/s41587-023-01773-0 |9 -- missing cx lookup -- |1 M van Kempen |p 243 - |2 Crossref |u van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024). |t Nat. Biotechnol. |v 42 |y 2024 |
999 | C | 5 | |a 10.1146/annurev-biochem-060910-095130 |9 -- missing cx lookup -- |1 NG Abrescia |p 795 - |2 Crossref |u Abrescia, N. G., Bamford, D. H., Grimes, J. M. & Stuart, D. I. Structure unifies the viral universe. Annu. Rev. Biochem. 81, 795–822 (2012). |t Annu. Rev. Biochem. |v 81 |y 2012 |
999 | C | 5 | |a 10.1093/ve/veaa003 |9 -- missing cx lookup -- |1 WM Ng |p veaa003 - |2 Crossref |u Ng, W. M., Stelfox, A. J. & Bowden, T. A. Unraveling virus relationships by structure-based phylogenetic classification. Virus Evol. 6, veaa003 (2020). |t Virus Evol. |v 6 |y 2020 |
999 | C | 5 | |a 10.1371/journal.pbio.3002174 |9 -- missing cx lookup -- |1 MR Oliver |p e3002174 - |2 Crossref |u Oliver, M. R. et al. Structures of the Hepaci-, Pegi-, and Pestiviruses envelope proteins suggest a novel membrane fusion mechanism. PLoS Biol. 21, e3002174 (2023). |t PLoS Biol. |v 21 |y 2023 |
999 | C | 5 | |a 10.3390/biom13010110 |9 -- missing cx lookup -- |2 Crossref |u Evseev, P., Gutnik, D., Shneider, M. & Miroshnikov, K. Use of an integrated approach involving AlphaFold predictions for the evolutionary taxonomy of Duplodnaviria viruses. Biomolecules 13 https://doi.org/10.3390/biom13010110 (2023). |
999 | C | 5 | |a 10.1128/mbio.00408-23 |1 P Mutz |9 -- missing cx lookup -- |2 Crossref |u Mutz, P. et al. Exaptation of inactivated host enzymes for structural roles in Orthopoxviruses and novel folds of virus proteins revealed by protein structure modeling. mBio 14, e0040823 (2023). |t mBio |v 14 |y 2023 |
999 | C | 5 | |a 10.1038/s41592-022-01488-1 |9 -- missing cx lookup -- |1 M Mirdita |p 679 - |2 Crossref |u Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022). |t Nat. Methods |v 19 |y 2022 |
999 | C | 5 | |a 10.1038/s41592-023-02087-4 |9 -- missing cx lookup -- |1 TC Terwilliger |p 110 - |2 Crossref |u Terwilliger, T. C. et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 21, 110–116 (2024). |t Nat. Methods |v 21 |y 2024 |
999 | C | 5 | |a 10.1038/s41592-021-01117-3 |9 -- missing cx lookup -- |1 M Necci |p 472 - |2 Crossref |u Necci, M., Piovesan, D., Predictors, C., DisProt, C. & Tosatto, S. C. E. Critical assessment of protein intrinsic disorder prediction. Nat. Methods 18, 472–481 (2021). |t Nat. Methods |v 18 |y 2021 |
999 | C | 5 | |a 10.1002/pro.4466 |9 -- missing cx lookup -- |1 D Piovesan |p e4466 - |2 Crossref |u Piovesan, D., Monzon, A. M. & Tosatto, S. C. E. Intrinsic protein disorder and conditional folding in AlphaFoldDB. Protein Sci. 31, e4466 (2022). |t Protein Sci. |v 31 |y 2022 |
999 | C | 5 | |a 10.1093/nar/gkac1065 |9 -- missing cx lookup -- |1 D Piovesan |p D438 - |2 Crossref |u Piovesan, D. et al. MobiDB: 10 years of intrinsically disordered proteins. Nucleic Acids Res. 51, D438–D444 (2023). |t Nucleic Acids Res. |v 51 |y 2023 |
999 | C | 5 | |a 10.1016/j.celrep.2022.110469 |9 -- missing cx lookup -- |1 E Caragliano |p 110469 - |2 Crossref |u Caragliano, E. et al. Human cytomegalovirus forms phase-separated compartments at viral genomes to facilitate viral replication. Cell Rep. 38, 110469 (2022). |t Cell Rep. |v 38 |y 2022 |
999 | C | 5 | |1 AK Dunker |y 2000 |2 Crossref |u Dunker, A. K., Obradovic, Z., Romero, P., Garner, E. C. & Brown, C. J. Intrinsic protein disorder in complete genomes. Genome Inform. 11, 161–171 (2000). |
999 | C | 5 | |a 10.1021/bi047993o |9 -- missing cx lookup -- |1 CJ Oldfield |p 1989 - |2 Crossref |u Oldfield, C. J. et al. Comparing and combining predictors of mostly disordered proteins. Biochemistry 44, 1989–2000 (2005). |t Biochemistry |v 44 |y 2005 |
999 | C | 5 | |a 10.1371/journal.pbio.3001423 |9 -- missing cx lookup -- |1 P Naniima |p e3001423 - |2 Crossref |u Naniima, P. et al. Assembly of infectious Kaposi’s sarcoma-associated herpesvirus progeny requires formation of a pORF19 pentamer. PLoS Biol. 19, e3001423 (2021). |t PLoS Biol. |v 19 |y 2021 |
999 | C | 5 | |a 10.1093/nar/gkw1099 |9 -- missing cx lookup -- |1 The UniProt, C. |p D158 - |2 Crossref |u The UniProt, C. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017). |t Nucleic Acids Res. |v 45 |y 2017 |
999 | C | 5 | |a 10.1017/CBO9780511545313 |9 -- missing cx lookup -- |2 Crossref |u Arvin, A. et al. (eds) Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. (Cambridge University Press, 2007). |
999 | C | 5 | |a 10.1016/S0968-0004(00)89105-7 |9 -- missing cx lookup -- |1 L Holm |p 478 - |2 Crossref |u Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995). |t Trends Biochem. Sci. |v 20 |y 1995 |
999 | C | 5 | |a 10.1098/rsob.210011 |9 -- missing cx lookup -- |1 O Bermek |p 210011 - |2 Crossref |u Bermek, O. & Williams, R. S. The three-component helicase/primase complex of herpes simplex virus-1. Open Biol. 11, 210011 (2021). |t Open Biol. |v 11 |y 2021 |
999 | C | 5 | |a 10.1093/bioinformatics/btu204 |9 -- missing cx lookup -- |1 D Kazlauskas |p 2093 - |2 Crossref |u Kazlauskas, D. & Venclovas, C. Herpesviral helicase-primase subunit UL8 is inactivated B-family polymerase. Bioinformatics 30, 2093–2097 (2014). |t Bioinformatics |v 30 |y 2014 |
999 | C | 5 | |a 10.1016/S0021-9258(17)31714-3 |9 -- missing cx lookup -- |1 K Weisshart |p 22788 - |2 Crossref |u Weisshart, K., Kuo, A. A., Hwang, C. B., Kumura, K. & Coen, D. M. Structural and functional organization of herpes simplex virus DNA polymerase investigated by limited proteolysis. J. Biol. Chem. 269, 22788–22796 (1994). |t J. Biol. Chem. |v 269 |y 1994 |
999 | C | 5 | |a 10.1128/JVI.73.6.5132-5136.1999 |9 -- missing cx lookup -- |1 S Jahedi |p 5132 - |2 Crossref |u Jahedi, S., Markovitz, N. S., Filatov, F. & Roizman, B. Colocalization of the herpes simplex virus 1 UL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J. Virol. 73, 5132–5138 (1999). |t J. Virol. |v 73 |y 1999 |
999 | C | 5 | |a 10.1016/S0092-8674(00)81056-9 |9 -- missing cx lookup -- |1 A Bochkarev |p 791 - |2 Crossref |u Bochkarev, A. et al. Crystal structure of the DNA-binding domain of the Epstein–Barr virus origin-binding protein, EBNA1, bound to DNA. Cell 84, 791–800 (1996). |t Cell |v 84 |y 1996 |
999 | C | 5 | |a 10.1136/vr.95.14.325 |9 -- missing cx lookup -- |1 JP Stevenson |p 325 - |2 Crossref |u Stevenson, J. P. Correspondence: Fish diseases research. Vet. Rec. 95, 325–326 (1974). |t Vet. Rec. |v 95 |y 1974 |
999 | C | 5 | |a 10.1073/pnas.1421804112 |9 -- missing cx lookup -- |1 J Hellert |p 6694 - |2 Crossref |u Hellert, J. et al. The 3D structure of Kaposi sarcoma herpesvirus LANA C-terminal domain bound to DNA. Proc. Natl. Acad. Sci. USA 112, 6694–6699 (2015). |t Proc. Natl. Acad. Sci. USA |v 112 |y 2015 |
999 | C | 5 | |a 10.1128/mbio.00337-22 |9 -- missing cx lookup -- |1 CB Ball |p e0033722 - |2 Crossref |u Ball, C. B. et al. Human Cytomegalovirus IE2 both activates and represses initiation and modulates elongation in a context-dependent manner. mBio 13, e0033722 (2022). |t mBio |v 13 |y 2022 |
999 | C | 5 | |a 10.1016/S0042-6822(03)00007-2 |9 -- missing cx lookup -- |1 A Gravel |p 340 - |2 Crossref |u Gravel, A., Tomoiu, A., Cloutier, N., Gosselin, J. & Flamand, L. Characterization of the immediate-early 2 protein of human herpesvirus 6, a promiscuous transcriptional activator. Virology 308, 340–353 (2003). |t Virology |v 308 |y 2003 |
999 | C | 5 | |a 10.1016/j.coviro.2023.101328 |1 K Szymanska-de Wijs |9 -- missing cx lookup -- |2 Crossref |u Szymanska-de Wijs, K., Dezeljin, M., Bogdanow, B. & Messerle, M. Viral determinants influencing intra- and intercellular communication in cytomegalovirus infection. Curr. Opin. Virol. 60, 101328 (2023). |t Curr. Opin. Virol. |v 60 |y 2023 |
999 | C | 5 | |a 10.1038/s41564-023-01433-8 |9 -- missing cx lookup -- |1 B Bogdanow |p 1732 - |2 Crossref |u Bogdanow, B. et al. Spatially resolved protein map of intact human cytomegalovirus virions. Nat. Microbiol. 8, 1732–1747 (2023). |t Nat. Microbiol. |v 8 |y 2023 |
999 | C | 5 | |a 10.3390/v12121382 |9 -- missing cx lookup -- |2 Crossref |u Nabiee, R., Syed, B., Ramirez Castano, J., Lalani, R. & Totonchy, J. E. An update of the virion proteome of Kaposi sarcoma-associated herpesvirus. Viruses 12 https://doi.org/10.3390/v12121382 (2020). |
999 | C | 5 | |a 10.1099/vir.0.18856-0 |9 -- missing cx lookup -- |1 AJ Davison |p 657 - |2 Crossref |u Davison, A. J. et al. Homology between the human cytomegalovirus RL11 gene family and human adenovirus E3 genes. J. Gen. Virol. 84, 657–663 (2003). |t J. Gen. Virol. |v 84 |y 2003 |
999 | C | 5 | |a 10.1073/pnas.2334032100 |9 -- missing cx lookup -- |1 W Dunn |p 14223 - |2 Crossref |u Dunn, W. et al. Functional profiling of a human cytomegalovirus genome. Proc. Natl. Acad. Sci. USA 100, 14223–14228 (2003). |t Proc. Natl. Acad. Sci. USA |v 100 |y 2003 |
999 | C | 5 | |a 10.1128/mbio.02946-22 |9 -- missing cx lookup -- |1 SA Osanyinlusi |p e0294622 - |2 Crossref |u Osanyinlusi, S. A. et al. Human Cytomegalovirus pUL11, a CD45 ligand, disrupts CD4 T cell control of viral spread in epithelial cells. mBio 13, e0294622 (2022). |t mBio |v 13 |y 2022 |
999 | C | 5 | |1 MS Chee |y 1990 |2 Crossref |u Chee, M. S. et al. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol Immunol. 154, 125–169 (1990). |
999 | C | 5 | |a 10.1128/JVI.77.10.5557-5570.2003 |9 -- missing cx lookup -- |1 C Menard |p 5557 - |2 Crossref |u Menard, C. et al. Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J. Virol. 77, 5557–5570 (2003). |t J. Virol. |v 77 |y 2003 |
999 | C | 5 | |a 10.1016/j.jmb.2009.06.034 |9 -- missing cx lookup -- |1 M Buisson |p 717 - |2 Crossref |u Buisson, M. et al. A bridge crosses the active-site canyon of the Epstein–Barr virus nuclease with DNase and RNase activities. J. Mol. Biol. 391, 717–728 (2009). |t J. Mol. Biol. |v 391 |y 2009 |
999 | C | 5 | |a 10.1111/j.1742-4658.2009.07374.x |9 -- missing cx lookup -- |1 SL Dahlroth |p 6636 - |2 Crossref |u Dahlroth, S. L. et al. Crystal structure of the shutoff and exonuclease protein from the oncogenic Kaposi’s sarcoma-associated herpesvirus. FEBS J. 276, 6636–6645 (2009). |t FEBS J. |v 276 |y 2009 |
999 | C | 5 | |1 H Lee |y 2017 |2 Crossref |u Lee, H. et al. KSHV SOX mediated host shutoff: the molecular mechanism underlying mRNA transcript processing. Nucleic Acids Res. 45, 4756–4767 (2017). |
999 | C | 5 | |a 10.1128/JVI.00443-11 |9 -- missing cx lookup -- |1 S Maninger |p 9254 - |2 Crossref |u Maninger, S. et al. M94 is essential for the secondary envelopment of murine cytomegalovirus. J. Virol. 85, 9254–9267 (2011). |t J. Virol. |v 85 |y 2011 |
999 | C | 5 | |a 10.1074/jbc.M109.018010 |9 -- missing cx lookup -- |1 JP Volpato |p 20079 - |2 Crossref |u Volpato, J. P. et al. Multiple conformers in active site of human dihydrofolate reductase F31R/Q35E double mutant suggest structural basis for methotrexate resistance. J. Biol. Chem. 284, 20079–20089 (2009). |t J. Biol. Chem. |v 284 |y 2009 |
999 | C | 5 | |a 10.1128/JVI.72.2.1005-1012.1998 |9 -- missing cx lookup -- |1 R Sarid |p 1005 - |2 Crossref |u Sarid, R., Flore, O., Bohenzky, R. A., Chang, Y. & Moore, P. S. Transcription mapping of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J. Virol. 72, 1005–1012 (1998). |t J. Virol. |v 72 |y 1998 |
999 | C | 5 | |a 10.1093/oxfordjournals.jncimonographs.a024179 |9 -- missing cx lookup -- |2 Crossref |u Nicholas, J. et al. Novel organizational features, captured cellular genes, and strain variability within the genome of KSHV/HHV8. J. Natl. Cancer Inst. Monogr. 79–88 10.1093/oxfordjournals.jncimonographs.a024179 (1998). |
999 | C | 5 | |a 10.1002/cbic.200400237 |9 -- missing cx lookup -- |1 EE Howell |p 590 - |2 Crossref |u Howell, E. E. Searching sequence space: two different approaches to dihydrofolate reductase catalysis. ChemBioChem 6, 590–600 (2005). |t ChemBioChem |v 6 |y 2005 |
999 | C | 5 | |a 10.1021/bi962337c |9 -- missing cx lookup -- |1 MR Sawaya |p 586 - |2 Crossref |u Sawaya, M. R. & Kraut, J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586–603 (1997). |t Biochemistry |v 36 |y 1997 |
999 | C | 5 | |a 10.1161/01.RES.0000238359.18495.42 |9 -- missing cx lookup -- |1 K Barnes |p 510 - |2 Crossref |u Barnes, K. et al. Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH. Circ. Res. 99, 510–519 (2006). |t Circ. Res. |v 99 |y 2006 |
999 | C | 5 | |a 10.1099/vir.0.009571-0 |9 -- missing cx lookup -- |1 JB Loesing |p 1440 - |2 Crossref |u Loesing, J. B., Di Fiore, S., Ritter, K., Fischer, R. & Kleines, M. Epstein–Barr virus BDLF2-BMRF2 complex affects cellular morphology. J. Gen. Virol. 90, 1440–1449 (2009). |t J. Gen. Virol. |v 90 |y 2009 |
999 | C | 5 | |a 10.1128/jvi.01528-22 |9 -- missing cx lookup -- |1 JJ Walston |p e0152822 - |2 Crossref |u Walston, J. J. et al. The Epstein–Barr virus glycoprotein BDLF2 is essential for efficient viral spread in stratified epithelium. J. Virol. 97, e0152822 (2023). |t J. Virol. |v 97 |y 2023 |
999 | C | 5 | |a 10.1016/j.virol.2005.01.032 |9 -- missing cx lookup -- |1 BG Klupp |p 224 - |2 Crossref |u Klupp, B. G., Altenschmidt, J., Granzow, H., Fuchs, W. & Mettenleiter, T. C. Identification and characterization of the pseudorabies virus UL43 protein. Virology 334, 224–233 (2005). |t Virology |v 334 |y 2005 |
999 | C | 5 | |a 10.1128/JVI.03041-14 |9 -- missing cx lookup -- |1 I El Kasmi |p 2313 - |2 Crossref |u El Kasmi, I. & Lippe, R. Herpes simplex virus 1 gN partners with gM to modulate the viral fusion machinery. J. Virol. 89, 2313–2323 (2015). |t J. Virol. |v 89 |y 2015 |
999 | C | 5 | |a 10.1038/s41594-019-0245-7 |9 -- missing cx lookup -- |1 NJ Wright |p 599 - |2 Crossref |u Wright, N. J. & Lee, S. Y. Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nat. Struct. Mol. Biol. 26, 599–606 (2019). |t Nat. Struct. Mol. Biol. |v 26 |y 2019 |
999 | C | 5 | |a 10.7554/eLife.50025 |9 -- missing cx lookup -- |2 Crossref |u Massa Lopez, D. et al. The lysosomal transporter MFSD1 is essential for liver homeostasis and critically depends on its accessory subunit GLMP. Elife 8 https://doi.org/10.7554/eLife.50025 (2019). |
999 | C | 5 | |a 10.1038/s41586-024-07809-y |9 -- missing cx lookup -- |1 J Nomburg |p 710 - |2 Crossref |u Nomburg, J. et al. Birth of protein folds and functions in the virome. Nature 633, 710–717 (2024). |t Nature |v 633 |y 2024 |
999 | C | 5 | |a 10.1128/JVI.79.20.12880-12892.2005 |9 -- missing cx lookup -- |1 AJ Davison |p 12880 - |2 Crossref |u Davison, A. J. & Stow, N. D. New genes from old: redeployment of dUTPase by herpesviruses. J. Virol. 79, 12880–12892 (2005). |t J. Virol. |v 79 |y 2005 |
999 | C | 5 | |a 10.1016/j.str.2005.06.009 |9 -- missing cx lookup -- |1 N Tarbouriech |p 1299 - |2 Crossref |u Tarbouriech, N., Buisson, M., Seigneurin, J. M., Cusack, S. & Burmeister, W. P. The monomeric dUTPase from Epstein–Barr virus mimics trimeric dUTPases. Structure 13, 1299–1310 (2005). |t Structure |v 13 |y 2005 |
999 | C | 5 | |a 10.3390/pathogens6010002 |9 -- missing cx lookup -- |2 Crossref |u Williams, M. V., Cox, B. & Ariza, M. E. Herpesviruses dUTPases: a new family of pathogen-associated molecular pattern (PAMP) proteins with implications for human disease. Pathogens 6 https://doi.org/10.3390/pathogens6010002 (2016). |
999 | C | 5 | |a 10.1002/pro.4915 |9 -- missing cx lookup -- |1 J Eberhage |p e4915 - |2 Crossref |u Eberhage, J. et al. Crystal structure of the tegument protein UL82 (pp71) from human cytomegalovirus. Protein Sci. 33, e4915 (2024). |t Protein Sci. |v 33 |y 2024 |
999 | C | 5 | |a 10.1126/science.279.5355.1344 |9 -- missing cx lookup -- |1 ZS Zhao |p 1344 - |2 Crossref |u Zhao, Z. S., Granucci, F., Yeh, L., Schaffer, P. A. & Cantor, H. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science 279, 1344–1347 (1998). |t Science |v 279 |y 1998 |
999 | C | 5 | |a 10.1038/s41579-022-00770-5 |9 -- missing cx lookup -- |1 SS Soldan |p 51 - |2 Crossref |u Soldan, S. S. & Lieberman, P. M. Epstein–Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 21, 51–64 (2023). |t Nat. Rev. Microbiol. |v 21 |y 2023 |
999 | C | 5 | |a 10.3390/pathogens11111362 |9 -- missing cx lookup -- |2 Crossref |u Begum, S. et al. Molecular mimicry analyses unveiled the human herpes simplex and poxvirus epitopes as possible candidates to incite autoimmunity. Pathogens 11 https://doi.org/10.3390/pathogens11111362 (2022). |
999 | C | 5 | |a 10.1084/jem.20072397 |9 -- missing cx lookup -- |1 JD Lunemann |p 1763 - |2 Crossref |u Lunemann, J. D. et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J. Exp. Med. 205, 1763–1773 (2008). |t J. Exp. Med. |v 205 |y 2008 |
999 | C | 5 | |a 10.1126/science.1126548 |9 -- missing cx lookup -- |1 EE Heldwein |p 217 - |2 Crossref |u Heldwein, E. E. et al. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313, 217–220 (2006). |t Science |v 313 |y 2006 |
999 | C | 5 | |a 10.1038/s41592-022-01685-y |9 -- missing cx lookup -- |1 ML Hekkelman |p 205 - |2 Crossref |u Hekkelman, M. L., de Vries, I., Joosten, R. P. & Perrakis, A. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat. Methods 20, 205–213 (2023). |t Nat. Methods |v 20 |y 2023 |
999 | C | 5 | |a 10.1186/s12859-023-05571-y |1 M Pang |9 -- missing cx lookup -- |2 Crossref |u Pang, M. et al. CoDock-Ligand: combined template-based docking and CNN-based scoring in ligand binding prediction. BMC Bioinform. 24, 444 (2023). |t BMC Bioinform. |v 24 |y 2023 |
999 | C | 5 | |a 10.1038/s41592-023-02086-5 |9 -- missing cx lookup -- |1 M Baek |p 117 - |2 Crossref |u Baek, M. et al. Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024). |t Nat. Methods |v 21 |y 2024 |
999 | C | 5 | |a 10.1126/science.adl2528 |9 -- missing cx lookup -- |1 R Krishna |p eadl2528 - |2 Crossref |u Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024). |t Science |v 384 |y 2024 |
999 | C | 5 | |a 10.1038/s41586-024-07487-w |9 -- missing cx lookup -- |1 J Abramson |p 493 - |2 Crossref |u Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024). |t Nature |v 630 |y 2024 |
999 | C | 5 | |a 10.1038/s41467-020-15992-5 |1 AW Whisnant |9 -- missing cx lookup -- |2 Crossref |u Whisnant, A. W. et al. Integrative functional genomics decodes herpes simplex virus 1. Nat. Commun. 11, 2038 (2020). |t Nat. Commun. |v 11 |y 2020 |
999 | C | 5 | |a 10.1126/science.1227919 |9 -- missing cx lookup -- |1 N Stern-Ginossar |p 1088 - |2 Crossref |u Stern-Ginossar, N. et al. Decoding human cytomegalovirus. Science 338, 1088–1093 (2012). |t Science |v 338 |y 2012 |
999 | C | 5 | |a 10.1093/nar/gky129 |9 -- missing cx lookup -- |1 M Bencun |p 2802 - |2 Crossref |u Bencun, M. et al. Translational profiling of B cells infected with the Epstein–Barr virus reveals 5′ leader ribosome recruitment through upstream open reading frames. Nucleic Acids Res. 46, 2802–2819 (2018). |t Nucleic Acids Res. |v 46 |y 2018 |
999 | C | 5 | |a 10.1371/journal.ppat.1003847 |9 -- missing cx lookup -- |1 C Arias |p e1003847 - |2 Crossref |u Arias, C. et al. KSHV 2.0: a comprehensive annotation of the Kaposi’s sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog. 10, e1003847 (2014). |t PLoS Pathog. |v 10 |y 2014 |
999 | C | 5 | |a 10.1093/nar/gkae540 |9 -- missing cx lookup -- |1 R Shekhar |p 7720 - |2 Crossref |u Shekhar, R. et al. High-density resolution of the Kaposi’s sarcoma associated herpesvirus transcriptome identifies novel transcript isoforms generated by long-range transcription and alternative splicing. Nucleic Acids Res. 52, 7720–7739 (2024). |t Nucleic Acids Res. |v 52 |y 2024 |
999 | C | 5 | |a 10.1038/nbt.3988 |9 -- missing cx lookup -- |1 M Steinegger |p 1026 - |2 Crossref |u Steinegger, M. & Soding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017). |t Nat. Biotechnol. |v 35 |y 2017 |
999 | C | 5 | |a 10.1038/nmeth.1818 |9 -- missing cx lookup -- |1 M Remmert |p 173 - |2 Crossref |u Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2011). |t Nat. Methods |v 9 |y 2011 |
999 | C | 5 | |a 10.1101/2022.04.08.487609 |9 -- missing cx lookup -- |2 Crossref |u Hallgren, J. et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. Preprint at bioRxiv https://doi.org/10.1101/2022.04.08.487609 (2022). |
999 | C | 5 | |a 10.1007/978-1-0716-0270-6_3 |9 -- missing cx lookup -- |1 L Holm |p 29 - |2 Crossref |u Holm, L. Using Dali for protein structure comparison. Methods Mol. Biol. 2112, 29–42 (2020). |t Methods Mol. Biol. |v 2112 |y 2020 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|