000619956 001__ 619956
000619956 005__ 20250723173151.0
000619956 0247_ $$2doi$$a10.1038/s41467-024-54668-2
000619956 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-08047
000619956 0247_ $$2altmetric$$aaltmetric:171128939
000619956 0247_ $$2pmid$$apmid:39592652
000619956 0247_ $$2WOS$$aWOS:001364813000027
000619956 0247_ $$2openalex$$aopenalex:W4404723969
000619956 037__ $$aPUBDB-2024-08047
000619956 041__ $$aEnglish
000619956 082__ $$a500
000619956 1001_ $$aSoh, Timothy K.$$b0
000619956 245__ $$aA proteome-wide structural systems approach reveals insights into protein families of all human herpesviruses
000619956 260__ $$a[London]$$bNature Publishing Group UK$$c2024
000619956 3367_ $$2DRIVER$$aarticle
000619956 3367_ $$2DataCite$$aOutput Types/Journal article
000619956 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738144636_3341508
000619956 3367_ $$2BibTeX$$aARTICLE
000619956 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000619956 3367_ $$00$$2EndNote$$aJournal Article
000619956 520__ $$aStructure predictions have become invaluable tools, but viral proteins are absent from the EMBL/DeepMind AlphaFold database. Here, we provide proteome-wide structure predictions for all nine human herpesviruses and analyze them in depth with explicit scoring thresholds. By clustering these predictions into structural similarity groups, we identified new families, such as the HCMV UL112-113 cluster, which is conserved in alpha- and betaherpesviruses. A domain-level search found protein families consisting of subgroups with varying numbers of duplicated folds. Using large-scale structural similarity searches, we identified viral proteins with cellular folds, such as the HSV-1 US2 cluster possessing dihydrofolate reductase folds and the EBV BMRF2 cluster that might have emerged from cellular equilibrative nucleoside transporters. Our HerpesFolds database is available at https://www.herpesfolds.org/herpesfolds and displays all models and clusters through an interactive web interface. Here, we show that system-wide structure predictions can reveal homology between viral species and identify potential protein functions. 
000619956 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000619956 536__ $$0G:(GEPRIS)390874280$$aDFG project G:(GEPRIS)390874280 - EXC 2155: RESIST - Resolving Infection Susceptibility (390874280)$$c390874280$$x1
000619956 542__ $$2Crossref$$i2024-11-26$$uhttps://creativecommons.org/licenses/by/4.0
000619956 542__ $$2Crossref$$i2024-11-26$$uhttps://creativecommons.org/licenses/by/4.0
000619956 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000619956 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000619956 7001_ $$aOgnibene, Sofia$$b1
000619956 7001_ $$aSanders, Saskia$$b2
000619956 7001_ $$aSchäper, Robin$$b3
000619956 7001_ $$00000-0003-1328-2695$$aKaufer, Benedikt B.$$b4
000619956 7001_ $$0P:(DE-H253)PIP1082972$$aBosse, Jens Bernhard$$b5$$eCorresponding author
000619956 77318 $$2Crossref$$3journal-article$$a10.1038/s41467-024-54668-2$$bSpringer Science and Business Media LLC$$d2024-11-26$$n1$$p10230$$tNature Communications$$v15$$x2041-1723$$y2024
000619956 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-54668-2$$gVol. 15, no. 1, p. 10230$$n1$$p10230$$tNature Communications$$v15$$x2041-1723$$y2024
000619956 8564_ $$uhttps://bib-pubdb1.desy.de/record/619956/files/s41467-024-54668-2.pdf$$yOpenAccess
000619956 8564_ $$uhttps://bib-pubdb1.desy.de/record/619956/files/s41467-024-54668-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000619956 909CO $$ooai:bib-pubdb1.desy.de:619956$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000619956 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1082972$$aCentre for Structural Systems Biology$$b5$$kCSSB
000619956 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1082972$$aExternal Institute$$b5$$kExtern
000619956 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000619956 9141_ $$y2024
000619956 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000619956 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000619956 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000619956 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000619956 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000619956 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000619956 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000619956 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
000619956 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000619956 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000619956 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
000619956 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
000619956 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
000619956 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000619956 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
000619956 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
000619956 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000619956 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000619956 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000619956 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000619956 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
000619956 9201_ $$0I:(DE-H253)CSSB-MHH-JB-20210520$$kCSSB-MHH-JB$$lCSSB-MHH-JB$$x0
000619956 980__ $$ajournal
000619956 980__ $$aVDB
000619956 980__ $$aUNRESTRICTED
000619956 980__ $$aI:(DE-H253)CSSB-MHH-JB-20210520
000619956 9801_ $$aFullTexts
000619956 999C5 $$1J Jumper$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-03819-2$$p583 -$$tNature$$uJumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).$$v596$$y2021
000619956 999C5 $$1M Baek$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abj8754$$p871 -$$tScience$$uBaek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).$$v373$$y2021
000619956 999C5 $$1M Akdel$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41594-022-00849-w$$p1056 -$$tNat. Struct. Mol. Biol.$$uAkdel, M. et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 29, 1056–1067 (2022).$$v29$$y2022
000619956 999C5 $$1CM Zmasek$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.virol.2019.01.005$$p29 -$$tVirology$$uZmasek, C. M., Knipe, D. M., Pellett, P. E. & Scheuermann, R. H. Classification of human Herpesviridae proteins using Domain-architecture Aware Inference of Orthologs (DAIO). Virology 529, 29–42 (2019).$$v529$$y2019
000619956 999C5 $$1M van Kempen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41587-023-01773-0$$p243 -$$tNat. Biotechnol.$$uvan Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).$$v42$$y2024
000619956 999C5 $$1NG Abrescia$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-biochem-060910-095130$$p795 -$$tAnnu. Rev. Biochem.$$uAbrescia, N. G., Bamford, D. H., Grimes, J. M. & Stuart, D. I. Structure unifies the viral universe. Annu. Rev. Biochem. 81, 795–822 (2012).$$v81$$y2012
000619956 999C5 $$1WM Ng$$2Crossref$$9-- missing cx lookup --$$a10.1093/ve/veaa003$$pveaa003 -$$tVirus Evol.$$uNg, W. M., Stelfox, A. J. & Bowden, T. A. Unraveling virus relationships by structure-based phylogenetic classification. Virus Evol. 6, veaa003 (2020).$$v6$$y2020
000619956 999C5 $$1MR Oliver$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pbio.3002174$$pe3002174 -$$tPLoS Biol.$$uOliver, M. R. et al. Structures of the Hepaci-, Pegi-, and Pestiviruses envelope proteins suggest a novel membrane fusion mechanism. PLoS Biol. 21, e3002174 (2023).$$v21$$y2023
000619956 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/biom13010110$$uEvseev, P., Gutnik, D., Shneider, M. & Miroshnikov, K. Use of an integrated approach involving AlphaFold predictions for the evolutionary taxonomy of Duplodnaviria viruses. Biomolecules 13 https://doi.org/10.3390/biom13010110 (2023).
000619956 999C5 $$1P Mutz$$2Crossref$$9-- missing cx lookup --$$a10.1128/mbio.00408-23$$tmBio$$uMutz, P. et al. Exaptation of inactivated host enzymes for structural roles in Orthopoxviruses and novel folds of virus proteins revealed by protein structure modeling. mBio 14, e0040823 (2023).$$v14$$y2023
000619956 999C5 $$1M Mirdita$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-022-01488-1$$p679 -$$tNat. Methods$$uMirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).$$v19$$y2022
000619956 999C5 $$1TC Terwilliger$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-023-02087-4$$p110 -$$tNat. Methods$$uTerwilliger, T. C. et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 21, 110–116 (2024).$$v21$$y2024
000619956 999C5 $$1M Necci$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-021-01117-3$$p472 -$$tNat. Methods$$uNecci, M., Piovesan, D., Predictors, C., DisProt, C. & Tosatto, S. C. E. Critical assessment of protein intrinsic disorder prediction. Nat. Methods 18, 472–481 (2021).$$v18$$y2021
000619956 999C5 $$1D Piovesan$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.4466$$pe4466 -$$tProtein Sci.$$uPiovesan, D., Monzon, A. M. & Tosatto, S. C. E. Intrinsic protein disorder and conditional folding in AlphaFoldDB. Protein Sci. 31, e4466 (2022).$$v31$$y2022
000619956 999C5 $$1D Piovesan$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkac1065$$pD438 -$$tNucleic Acids Res.$$uPiovesan, D. et al. MobiDB: 10 years of intrinsically disordered proteins. Nucleic Acids Res. 51, D438–D444 (2023).$$v51$$y2023
000619956 999C5 $$1E Caragliano$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.celrep.2022.110469$$p110469 -$$tCell Rep.$$uCaragliano, E. et al. Human cytomegalovirus forms phase-separated compartments at viral genomes to facilitate viral replication. Cell Rep. 38, 110469 (2022).$$v38$$y2022
000619956 999C5 $$1AK Dunker$$2Crossref$$uDunker, A. K., Obradovic, Z., Romero, P., Garner, E. C. & Brown, C. J. Intrinsic protein disorder in complete genomes. Genome Inform. 11, 161–171 (2000).$$y2000
000619956 999C5 $$1CJ Oldfield$$2Crossref$$9-- missing cx lookup --$$a10.1021/bi047993o$$p1989 -$$tBiochemistry$$uOldfield, C. J. et al. Comparing and combining predictors of mostly disordered proteins. Biochemistry 44, 1989–2000 (2005).$$v44$$y2005
000619956 999C5 $$1P Naniima$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pbio.3001423$$pe3001423 -$$tPLoS Biol.$$uNaniima, P. et al. Assembly of infectious Kaposi’s sarcoma-associated herpesvirus progeny requires formation of a pORF19 pentamer. PLoS Biol. 19, e3001423 (2021).$$v19$$y2021
000619956 999C5 $$1The UniProt, C.$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkw1099$$pD158 -$$tNucleic Acids Res.$$uThe UniProt, C. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).$$v45$$y2017
000619956 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/CBO9780511545313$$uArvin, A. et al. (eds) Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. (Cambridge University Press, 2007).
000619956 999C5 $$1L Holm$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0968-0004(00)89105-7$$p478 -$$tTrends Biochem. Sci.$$uHolm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).$$v20$$y1995
000619956 999C5 $$1O Bermek$$2Crossref$$9-- missing cx lookup --$$a10.1098/rsob.210011$$p210011 -$$tOpen Biol.$$uBermek, O. & Williams, R. S. The three-component helicase/primase complex of herpes simplex virus-1. Open Biol. 11, 210011 (2021).$$v11$$y2021
000619956 999C5 $$1D Kazlauskas$$2Crossref$$9-- missing cx lookup --$$a10.1093/bioinformatics/btu204$$p2093 -$$tBioinformatics$$uKazlauskas, D. & Venclovas, C. Herpesviral helicase-primase subunit UL8 is inactivated B-family polymerase. Bioinformatics 30, 2093–2097 (2014).$$v30$$y2014
000619956 999C5 $$1K Weisshart$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9258(17)31714-3$$p22788 -$$tJ. Biol. Chem.$$uWeisshart, K., Kuo, A. A., Hwang, C. B., Kumura, K. & Coen, D. M. Structural and functional organization of herpes simplex virus DNA polymerase investigated by limited proteolysis. J. Biol. Chem. 269, 22788–22796 (1994).$$v269$$y1994
000619956 999C5 $$1S Jahedi$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.73.6.5132-5136.1999$$p5132 -$$tJ. Virol.$$uJahedi, S., Markovitz, N. S., Filatov, F. & Roizman, B. Colocalization of the herpes simplex virus 1 UL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J. Virol. 73, 5132–5138 (1999).$$v73$$y1999
000619956 999C5 $$1A Bochkarev$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0092-8674(00)81056-9$$p791 -$$tCell$$uBochkarev, A. et al. Crystal structure of the DNA-binding domain of the Epstein–Barr virus origin-binding protein, EBNA1, bound to DNA. Cell 84, 791–800 (1996).$$v84$$y1996
000619956 999C5 $$1JP Stevenson$$2Crossref$$9-- missing cx lookup --$$a10.1136/vr.95.14.325$$p325 -$$tVet. Rec.$$uStevenson, J. P. Correspondence: Fish diseases research. Vet. Rec. 95, 325–326 (1974).$$v95$$y1974
000619956 999C5 $$1J Hellert$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1421804112$$p6694 -$$tProc. Natl. Acad. Sci. USA$$uHellert, J. et al. The 3D structure of Kaposi sarcoma herpesvirus LANA C-terminal domain bound to DNA. Proc. Natl. Acad. Sci. USA 112, 6694–6699 (2015).$$v112$$y2015
000619956 999C5 $$1CB Ball$$2Crossref$$9-- missing cx lookup --$$a10.1128/mbio.00337-22$$pe0033722 -$$tmBio$$uBall, C. B. et al. Human Cytomegalovirus IE2 both activates and represses initiation and modulates elongation in a context-dependent manner. mBio 13, e0033722 (2022).$$v13$$y2022
000619956 999C5 $$1A Gravel$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0042-6822(03)00007-2$$p340 -$$tVirology$$uGravel, A., Tomoiu, A., Cloutier, N., Gosselin, J. & Flamand, L. Characterization of the immediate-early 2 protein of human herpesvirus 6, a promiscuous transcriptional activator. Virology 308, 340–353 (2003).$$v308$$y2003
000619956 999C5 $$1K Szymanska-de Wijs$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.coviro.2023.101328$$tCurr. Opin. Virol.$$uSzymanska-de Wijs, K., Dezeljin, M., Bogdanow, B. & Messerle, M. Viral determinants influencing intra- and intercellular communication in cytomegalovirus infection. Curr. Opin. Virol. 60, 101328 (2023).$$v60$$y2023
000619956 999C5 $$1B Bogdanow$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41564-023-01433-8$$p1732 -$$tNat. Microbiol.$$uBogdanow, B. et al. Spatially resolved protein map of intact human cytomegalovirus virions. Nat. Microbiol. 8, 1732–1747 (2023).$$v8$$y2023
000619956 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/v12121382$$uNabiee, R., Syed, B., Ramirez Castano, J., Lalani, R. & Totonchy, J. E. An update of the virion proteome of Kaposi sarcoma-associated herpesvirus. Viruses 12 https://doi.org/10.3390/v12121382 (2020).
000619956 999C5 $$1AJ Davison$$2Crossref$$9-- missing cx lookup --$$a10.1099/vir.0.18856-0$$p657 -$$tJ. Gen. Virol.$$uDavison, A. J. et al. Homology between the human cytomegalovirus RL11 gene family and human adenovirus E3 genes. J. Gen. Virol. 84, 657–663 (2003).$$v84$$y2003
000619956 999C5 $$1W Dunn$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2334032100$$p14223 -$$tProc. Natl. Acad. Sci. USA$$uDunn, W. et al. Functional profiling of a human cytomegalovirus genome. Proc. Natl. Acad. Sci. USA 100, 14223–14228 (2003).$$v100$$y2003
000619956 999C5 $$1SA Osanyinlusi$$2Crossref$$9-- missing cx lookup --$$a10.1128/mbio.02946-22$$pe0294622 -$$tmBio$$uOsanyinlusi, S. A. et al. Human Cytomegalovirus pUL11, a CD45 ligand, disrupts CD4 T cell control of viral spread in epithelial cells. mBio 13, e0294622 (2022).$$v13$$y2022
000619956 999C5 $$1MS Chee$$2Crossref$$uChee, M. S. et al. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol Immunol. 154, 125–169 (1990).$$y1990
000619956 999C5 $$1C Menard$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.77.10.5557-5570.2003$$p5557 -$$tJ. Virol.$$uMenard, C. et al. Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J. Virol. 77, 5557–5570 (2003).$$v77$$y2003
000619956 999C5 $$1M Buisson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmb.2009.06.034$$p717 -$$tJ. Mol. Biol.$$uBuisson, M. et al. A bridge crosses the active-site canyon of the Epstein–Barr virus nuclease with DNase and RNase activities. J. Mol. Biol. 391, 717–728 (2009).$$v391$$y2009
000619956 999C5 $$1SL Dahlroth$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1742-4658.2009.07374.x$$p6636 -$$tFEBS J.$$uDahlroth, S. L. et al. Crystal structure of the shutoff and exonuclease protein from the oncogenic Kaposi’s sarcoma-associated herpesvirus. FEBS J. 276, 6636–6645 (2009).$$v276$$y2009
000619956 999C5 $$1H Lee$$2Crossref$$uLee, H. et al. KSHV SOX mediated host shutoff: the molecular mechanism underlying mRNA transcript processing. Nucleic Acids Res. 45, 4756–4767 (2017).$$y2017
000619956 999C5 $$1S Maninger$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.00443-11$$p9254 -$$tJ. Virol.$$uManinger, S. et al. M94 is essential for the secondary envelopment of murine cytomegalovirus. J. Virol. 85, 9254–9267 (2011).$$v85$$y2011
000619956 999C5 $$1JP Volpato$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M109.018010$$p20079 -$$tJ. Biol. Chem.$$uVolpato, J. P. et al. Multiple conformers in active site of human dihydrofolate reductase F31R/Q35E double mutant suggest structural basis for methotrexate resistance. J. Biol. Chem. 284, 20079–20089 (2009).$$v284$$y2009
000619956 999C5 $$1R Sarid$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.72.2.1005-1012.1998$$p1005 -$$tJ. Virol.$$uSarid, R., Flore, O., Bohenzky, R. A., Chang, Y. & Moore, P. S. Transcription mapping of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J. Virol. 72, 1005–1012 (1998).$$v72$$y1998
000619956 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/oxfordjournals.jncimonographs.a024179$$uNicholas, J. et al. Novel organizational features, captured cellular genes, and strain variability within the genome of KSHV/HHV8. J. Natl. Cancer Inst. Monogr. 79–88 10.1093/oxfordjournals.jncimonographs.a024179 (1998).
000619956 999C5 $$1EE Howell$$2Crossref$$9-- missing cx lookup --$$a10.1002/cbic.200400237$$p590 -$$tChemBioChem$$uHowell, E. E. Searching sequence space: two different approaches to dihydrofolate reductase catalysis. ChemBioChem 6, 590–600 (2005).$$v6$$y2005
000619956 999C5 $$1MR Sawaya$$2Crossref$$9-- missing cx lookup --$$a10.1021/bi962337c$$p586 -$$tBiochemistry$$uSawaya, M. R. & Kraut, J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586–603 (1997).$$v36$$y1997
000619956 999C5 $$1K Barnes$$2Crossref$$9-- missing cx lookup --$$a10.1161/01.RES.0000238359.18495.42$$p510 -$$tCirc. Res.$$uBarnes, K. et al. Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH. Circ. Res. 99, 510–519 (2006).$$v99$$y2006
000619956 999C5 $$1JB Loesing$$2Crossref$$9-- missing cx lookup --$$a10.1099/vir.0.009571-0$$p1440 -$$tJ. Gen. Virol.$$uLoesing, J. B., Di Fiore, S., Ritter, K., Fischer, R. & Kleines, M. Epstein–Barr virus BDLF2-BMRF2 complex affects cellular morphology. J. Gen. Virol. 90, 1440–1449 (2009).$$v90$$y2009
000619956 999C5 $$1JJ Walston$$2Crossref$$9-- missing cx lookup --$$a10.1128/jvi.01528-22$$pe0152822 -$$tJ. Virol.$$uWalston, J. J. et al. The Epstein–Barr virus glycoprotein BDLF2 is essential for efficient viral spread in stratified epithelium. J. Virol. 97, e0152822 (2023).$$v97$$y2023
000619956 999C5 $$1BG Klupp$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.virol.2005.01.032$$p224 -$$tVirology$$uKlupp, B. G., Altenschmidt, J., Granzow, H., Fuchs, W. & Mettenleiter, T. C. Identification and characterization of the pseudorabies virus UL43 protein. Virology 334, 224–233 (2005).$$v334$$y2005
000619956 999C5 $$1I El Kasmi$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.03041-14$$p2313 -$$tJ. Virol.$$uEl Kasmi, I. & Lippe, R. Herpes simplex virus 1 gN partners with gM to modulate the viral fusion machinery. J. Virol. 89, 2313–2323 (2015).$$v89$$y2015
000619956 999C5 $$1NJ Wright$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41594-019-0245-7$$p599 -$$tNat. Struct. Mol. Biol.$$uWright, N. J. & Lee, S. Y. Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nat. Struct. Mol. Biol. 26, 599–606 (2019).$$v26$$y2019
000619956 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.50025$$uMassa Lopez, D. et al. The lysosomal transporter MFSD1 is essential for liver homeostasis and critically depends on its accessory subunit GLMP. Elife 8 https://doi.org/10.7554/eLife.50025 (2019).
000619956 999C5 $$1J Nomburg$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-024-07809-y$$p710 -$$tNature$$uNomburg, J. et al. Birth of protein folds and functions in the virome. Nature 633, 710–717 (2024).$$v633$$y2024
000619956 999C5 $$1AJ Davison$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.79.20.12880-12892.2005$$p12880 -$$tJ. Virol.$$uDavison, A. J. & Stow, N. D. New genes from old: redeployment of dUTPase by herpesviruses. J. Virol. 79, 12880–12892 (2005).$$v79$$y2005
000619956 999C5 $$1N Tarbouriech$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.str.2005.06.009$$p1299 -$$tStructure$$uTarbouriech, N., Buisson, M., Seigneurin, J. M., Cusack, S. & Burmeister, W. P. The monomeric dUTPase from Epstein–Barr virus mimics trimeric dUTPases. Structure 13, 1299–1310 (2005).$$v13$$y2005
000619956 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/pathogens6010002$$uWilliams, M. V., Cox, B. & Ariza, M. E. Herpesviruses dUTPases: a new family of pathogen-associated molecular pattern (PAMP) proteins with implications for human disease. Pathogens 6 https://doi.org/10.3390/pathogens6010002 (2016).
000619956 999C5 $$1J Eberhage$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.4915$$pe4915 -$$tProtein Sci.$$uEberhage, J. et al. Crystal structure of the tegument protein UL82 (pp71) from human cytomegalovirus. Protein Sci. 33, e4915 (2024).$$v33$$y2024
000619956 999C5 $$1ZS Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.279.5355.1344$$p1344 -$$tScience$$uZhao, Z. S., Granucci, F., Yeh, L., Schaffer, P. A. & Cantor, H. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science 279, 1344–1347 (1998).$$v279$$y1998
000619956 999C5 $$1SS Soldan$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41579-022-00770-5$$p51 -$$tNat. Rev. Microbiol.$$uSoldan, S. S. & Lieberman, P. M. Epstein–Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 21, 51–64 (2023).$$v21$$y2023
000619956 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/pathogens11111362$$uBegum, S. et al. Molecular mimicry analyses unveiled the human herpes simplex and poxvirus epitopes as possible candidates to incite autoimmunity. Pathogens 11 https://doi.org/10.3390/pathogens11111362 (2022).
000619956 999C5 $$1JD Lunemann$$2Crossref$$9-- missing cx lookup --$$a10.1084/jem.20072397$$p1763 -$$tJ. Exp. Med.$$uLunemann, J. D. et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J. Exp. Med. 205, 1763–1773 (2008).$$v205$$y2008
000619956 999C5 $$1EE Heldwein$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1126548$$p217 -$$tScience$$uHeldwein, E. E. et al. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313, 217–220 (2006).$$v313$$y2006
000619956 999C5 $$1ML Hekkelman$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-022-01685-y$$p205 -$$tNat. Methods$$uHekkelman, M. L., de Vries, I., Joosten, R. P. & Perrakis, A. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat. Methods 20, 205–213 (2023).$$v20$$y2023
000619956 999C5 $$1M Pang$$2Crossref$$9-- missing cx lookup --$$a10.1186/s12859-023-05571-y$$tBMC Bioinform.$$uPang, M. et al. CoDock-Ligand: combined template-based docking and CNN-based scoring in ligand binding prediction. BMC Bioinform. 24, 444 (2023).$$v24$$y2023
000619956 999C5 $$1M Baek$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-023-02086-5$$p117 -$$tNat. Methods$$uBaek, M. et al. Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).$$v21$$y2024
000619956 999C5 $$1R Krishna$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.adl2528$$peadl2528 -$$tScience$$uKrishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).$$v384$$y2024
000619956 999C5 $$1J Abramson$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-024-07487-w$$p493 -$$tNature$$uAbramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).$$v630$$y2024
000619956 999C5 $$1AW Whisnant$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-15992-5$$tNat. Commun.$$uWhisnant, A. W. et al. Integrative functional genomics decodes herpes simplex virus 1. Nat. Commun. 11, 2038 (2020).$$v11$$y2020
000619956 999C5 $$1N Stern-Ginossar$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1227919$$p1088 -$$tScience$$uStern-Ginossar, N. et al. Decoding human cytomegalovirus. Science 338, 1088–1093 (2012).$$v338$$y2012
000619956 999C5 $$1M Bencun$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gky129$$p2802 -$$tNucleic Acids Res.$$uBencun, M. et al. Translational profiling of B cells infected with the Epstein–Barr virus reveals 5′ leader ribosome recruitment through upstream open reading frames. Nucleic Acids Res. 46, 2802–2819 (2018).$$v46$$y2018
000619956 999C5 $$1C Arias$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.ppat.1003847$$pe1003847 -$$tPLoS Pathog.$$uArias, C. et al. KSHV 2.0: a comprehensive annotation of the Kaposi’s sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog. 10, e1003847 (2014).$$v10$$y2014
000619956 999C5 $$1R Shekhar$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkae540$$p7720 -$$tNucleic Acids Res.$$uShekhar, R. et al. High-density resolution of the Kaposi’s sarcoma associated herpesvirus transcriptome identifies novel transcript isoforms generated by long-range transcription and alternative splicing. Nucleic Acids Res. 52, 7720–7739 (2024).$$v52$$y2024
000619956 999C5 $$1M Steinegger$$2Crossref$$9-- missing cx lookup --$$a10.1038/nbt.3988$$p1026 -$$tNat. Biotechnol.$$uSteinegger, M. & Soding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).$$v35$$y2017
000619956 999C5 $$1M Remmert$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.1818$$p173 -$$tNat. Methods$$uRemmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2011).$$v9$$y2011
000619956 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2022.04.08.487609$$uHallgren, J. et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. Preprint at bioRxiv https://doi.org/10.1101/2022.04.08.487609 (2022).
000619956 999C5 $$1L Holm$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-0716-0270-6_3$$p29 -$$tMethods Mol. Biol.$$uHolm, L. Using Dali for protein structure comparison. Methods Mol. Biol. 2112, 29–42 (2020).$$v2112$$y2020