000619952 001__ 619952
000619952 005__ 20250723173148.0
000619952 0247_ $$2doi$$a10.1101/2024.01.17.575985
000619952 0247_ $$2altmetric$$aaltmetric:158451468
000619952 0247_ $$2openalex$$aopenalex:W4390937767
000619952 037__ $$aPUBDB-2024-08043
000619952 041__ $$aEnglish
000619952 1001_ $$00000-0003-3421-6363$$aHoffmann, Patrick C.$$b0
000619952 245__ $$aNuclear pores as conduits for fluid flow during osmotic stress
000619952 260__ $$c2024
000619952 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1734698986_2267006
000619952 3367_ $$2ORCID$$aWORKING_PAPER
000619952 3367_ $$028$$2EndNote$$aElectronic Article
000619952 3367_ $$2DRIVER$$apreprint
000619952 3367_ $$2BibTeX$$aARTICLE
000619952 3367_ $$2DataCite$$aOutput Types/Working Paper
000619952 520__ $$aChanging environmental conditions necessitate an immediate cellular adaptation to ensure survival. Dictyostelium discoideum, a bacteriovore slime mold present in the soil of most terrestrial ecosystems, is known for its ability to tolerate drastic changes in osmolarity. How the cells cope with the resulting mechanical stress remains understudied. Here we show that D. discoideum has extraordinarily elaborate and resilient nuclear pores that serve as conduits for massive fluid exchange between cytosol and nucleus. We capitalize on the unique properties of D. discoideum cells to quantify flow across the nuclear envelope that is necessitated by changing nuclear size in response to osmotic stress. Based on mathematical concepts adapted from hydrodynamics, we conceptualize this phenomenon as porous flow across nuclear pores. This type of fluid flow is distinct from the canonically characterized modes of nucleocytoplasmic transport, i.e. passive diffusion and active nuclear transport, because of its dependence on pressure. Our insights are relevant in any biological condition that necessitates rapid nuclear size changes, which includes metastasizing cancer cells squeezing through constrictions, migrating cells and differentiating tissues.
000619952 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000619952 588__ $$aDataset connected to CrossRef
000619952 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000619952 7001_ $$00009-0009-1446-1354$$aKim, Hyuntae$$b1
000619952 7001_ $$00000-0001-7686-695X$$aObarska-Kosinska, Agnieszka$$b2
000619952 7001_ $$00000-0002-4770-6313$$aKreysing, Jan Philipp$$b3
000619952 7001_ $$aAndino-Frydman, Eli$$b4
000619952 7001_ $$00000-0003-1256-2206$$aCruz-Leon, Sergio$$b5
000619952 7001_ $$aCernikova, Lenka$$b6
000619952 7001_ $$aKosinski, Jan$$b7
000619952 7001_ $$00000-0002-5457-4478$$aTuroňová, Beata$$b8
000619952 7001_ $$00000-0001-7768-746X$$aHummer, Gerhard$$b9$$eCorresponding author
000619952 7001_ $$00000-0002-7397-1321$$aBeck, Martin$$b10$$eCorresponding author
000619952 773__ $$a10.1101/2024.01.17.575985
000619952 8564_ $$uhttps://bib-pubdb1.desy.de/record/619952/files/2024.01.17.575985v1.full.pdf$$yRestricted
000619952 8564_ $$uhttps://bib-pubdb1.desy.de/record/619952/files/2024.01.17.575985v1.full.pdf?subformat=pdfa$$xpdfa$$yRestricted
000619952 909CO $$ooai:bib-pubdb1.desy.de:619952$$pVDB
000619952 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000619952 9141_ $$y2024
000619952 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000619952 9201_ $$0I:(DE-H253)CSSB-EMBL-JK-20210701$$kCSSB-EMBL-JK$$lCSSB-EMBL-JK$$x0
000619952 980__ $$apreprint
000619952 980__ $$aVDB
000619952 980__ $$aI:(DE-H253)CSSB-EMBL-JK-20210701
000619952 980__ $$aUNRESTRICTED