Home > Publications database > Subtleties in Clathrin heavy chain binding boxes provide selectivity among adaptor proteins of budding yeast > print |
001 | 619947 | ||
005 | 20250811212110.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-54037-z |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-08038 |2 datacite_doi |
024 | 7 | _ | |a altmetric:170406760 |2 altmetric |
024 | 7 | _ | |a pmid:39511183 |2 pmid |
024 | 7 | _ | |a WOS:001352440200007 |2 WOS |
024 | 7 | _ | |a openalex:W4404125482 |2 openalex |
037 | _ | _ | |a PUBDB-2024-08038 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Defelipe, Lucas A. |b 0 |
245 | _ | _ | |a Subtleties in Clathrin heavy chain binding boxes provide selectivity among adaptor proteins of budding yeast |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1754897774_2650031 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Clathrin forms a triskelion, or three-legged, network that regulates cellular processes by facilitating cargo internalization and trafficking in eukaryotes. Its N-terminal domain is crucial for interacting with adaptor proteins, which link clathrin to the membrane and engage with specific cargo. The N-terminal domain contains up to four adaptor-binding sites, though their role in preferential occupancy by adaptor proteins remains unclear. In this study, we examine the binding hierarchy of adaptors for clathrin, using integrative biophysical and structural approaches, along with in vivo functional experiments. We find that yeast epsin Ent5 has the highest affinity for clathrin, highlighting its key role in cellular trafficking. Epsins Ent1 and Ent2, crucial for endocytosis but thought to have redundant functions, show distinct binding patterns. Ent1 exhibits stronger interactions with clathrin than Ent2, suggesting a functional divergence toward actin binding. These results offer molecular insights into adaptor protein selectivity, suggesting they competitively bind clathrin while also targeting three different clathrin sites. |
536 | _ | _ | |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) |0 G:(DE-HGF)POF4-633 |c POF4-633 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
542 | _ | _ | |i 2024-11-07 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-11-07 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to DataCite |
693 | _ | _ | |a PETRA III |f PETRA Beamline P13 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P13-20150101 |6 EXP:(DE-H253)P-P13-20150101 |x 0 |
693 | _ | _ | |a PETRA III |f PETRA Beamline P14 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P14-20150101 |6 EXP:(DE-H253)P-P14-20150101 |x 1 |
693 | _ | _ | |1 EXP:(DE-H253)SPC-20250101 |0 EXP:(DE-H253)SPC-20250101 |a Sample Preparation and Characterisation Facility |x 2 |
693 | _ | _ | |1 EXP:(DE-H253)ALFM-20250101 |0 EXP:(DE-H253)ALFM-20250101 |a Advanced Light and Fluorescence Microscopy Facility |x 3 |
700 | 1 | _ | |a Veith, Katharina |0 P:(DE-H253)PIP1025998 |b 1 |
700 | 1 | _ | |a Burastero, Osvaldo |b 2 |
700 | 1 | _ | |a Kupriianova, Tatiana |b 3 |
700 | 1 | _ | |a Bento, Isabel |0 P:(DE-H253)PIP1021139 |b 4 |
700 | 1 | _ | |a Skruzny, Michal |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Koelbel, Knut |0 P:(DE-H253)PIP1083842 |b 6 |
700 | 1 | _ | |a Uetrecht, Charlotte |0 P:(DE-H253)PIP1014042 |b 7 |
700 | 1 | _ | |a Thuenauer, Roland |b 8 |
700 | 1 | _ | |a García-Alai, Maria M. |0 0000-0002-5200-7816 |b 9 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s41467-024-54037-z |b Springer Science and Business Media LLC |d 2024-11-07 |n 1 |p 9655 |3 journal-article |2 Crossref |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
773 | _ | _ | |a 10.1038/s41467-024-54037-z |g Vol. 15, no. 1, p. 9655 |0 PERI:(DE-600)2553671-0 |n 1 |p 9655 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619947/files/Defelipe_et_al-2024-Nature_Communications.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619947/files/Defelipe_et_al-2024-Nature_Communications.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:619947 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 1 |6 P:(DE-H253)PIP1025998 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1025998 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1021139 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 6 |6 P:(DE-H253)PIP1083842 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1083842 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1083842 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 7 |6 P:(DE-H253)PIP1014042 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 7 |6 P:(DE-H253)PIP1014042 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1014042 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-633 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Life Sciences – Building Blocks of Life: Structure and Function |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-LIV_DESY-CU-20220525 |k CSSB-LIV/DESY-CU |l CSSB - Leibniz-Institut für Experimentelle Virologie (LIV) / DESY - Charlotte Uetrecht |x 0 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-CF-ALFM-20210629 |k CSSB-CF-ALFM |l CSSB-CF-ALFM |x 1 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-CF-SPC-20210520 |k CSSB-CF-SPC |l CSSB-CF-SPC |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)CSSB-LIV_DESY-CU-20220525 |
980 | _ | _ | |a I:(DE-H253)CSSB-CF-ALFM-20210629 |
980 | _ | _ | |a I:(DE-H253)CSSB-CF-SPC-20210520 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1126/science.274.5295.2086 |9 -- missing cx lookup -- |1 AV Vieira |p 2086 - |2 Crossref |u Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996). |t Science |v 274 |y 1996 |
999 | C | 5 | |a 10.1101/cshperspect.a016790 |9 -- missing cx lookup -- |1 LM Traub |p a016790 - |2 Crossref |u Traub, L. M. & Bonifacino, J. S. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 5, a016790 (2013). |t Cold Spring Harb. Perspect. Biol. |v 5 |y 2013 |
999 | C | 5 | |a 10.1038/nrm1571 |9 -- missing cx lookup -- |1 C Le Roy |p 112 - |2 Crossref |u Le Roy, C. & Wrana, J. L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat. Rev. Mol. Cell Biol. 6, 112–126 (2005). |t Nat. Rev. Mol. Cell Biol. |v 6 |y 2005 |
999 | C | 5 | |a 10.1093/pcp/pci044 |9 -- missing cx lookup -- |1 E Etxeberria |p 474 - |2 Crossref |u Etxeberria, E., Baroja-Fernandez, E., Muñoz, F. J. & Pozueta-Romero, J. Sucrose-inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell Physiol. 46, 474–481 (2005). |t Plant Cell Physiol. |v 46 |y 2005 |
999 | C | 5 | |a 10.1074/jbc.M110.162883 |9 -- missing cx lookup -- |1 SS Johnson |p 35792 - |2 Crossref |u Johnson, S. S. et al. Regulation of yeast nutrient permease endocytosis by ATP-binding cassette transporters and a seven-transmembrane protein, RSB1. J. Biol. Chem. 285, 35792–35802 (2010). |t J. Biol. Chem. |v 285 |y 2010 |
999 | C | 5 | |a 10.1128/JVI.00024-06 |9 -- missing cx lookup -- |1 E Blanchard |p 6964 - |2 Crossref |u Blanchard, E. et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol. 80, 6964–6972 (2006). |t J. Virol. |v 80 |y 2006 |
999 | C | 5 | |a 10.1128/JVI.78.19.10543-10555.2004 |9 -- missing cx lookup -- |1 JJH Chu |p 10543 - |2 Crossref |u Chu, J. J. H. & Ng, M. L. Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J. Virol. 78, 10543–10555 (2004). |t J. Virol. |v 78 |y 2004 |
999 | C | 5 | |a 10.1016/j.jbc.2021.100306 |9 -- missing cx lookup -- |1 A Bayati |p 100306 - |2 Crossref |u Bayati, A., Kumar, R., Francis, V. & McPherson, P. S. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J. Biol. Chem. 296, 100306 (2021). |t J. Biol. Chem. |v 296 |y 2021 |
999 | C | 5 | |a 10.1146/annurev-biochem-060208-104626 |9 -- missing cx lookup -- |1 J Mercer |p 803 - |2 Crossref |u Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–833 (2010). |t Annu. Rev. Biochem. |v 79 |y 2010 |
999 | C | 5 | |a 10.1038/ncb1292 |9 -- missing cx lookup -- |1 E Veiga |p 894 - |2 Crossref |u Veiga, E. & Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat. Cell Biol. 7, 894–900 (2005). |t Nat. Cell Biol. |v 7 |y 2005 |
999 | C | 5 | |a 10.1038/nrm.2017.132 |9 -- missing cx lookup -- |1 M Kaksonen |p 313 - |2 Crossref |u Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018). |t Nat. Rev. Mol. Cell Biol. |v 19 |y 2018 |
999 | C | 5 | |a 10.1038/s41594-019-0292-0 |9 -- missing cx lookup -- |1 KL Morris |p 890 - |2 Crossref |u Morris, K. L. et al. Cryo-EM of multiple cage architectures reveals a universal mode of clathrin self-assembly. Nat. Struct. Mol. Biol. 26, 890–898 (2019). |t Nat. Struct. Mol. Biol. |v 26 |y 2019 |
999 | C | 5 | |a 10.1016/j.devcel.2005.10.002 |9 -- missing cx lookup -- |1 D Perrais |p 581 - |2 Crossref |u Perrais, D. & Merrifield, C. J. Dynamics of endocytic vesicle creation. Dev. Cell 9, 581–592 (2005). |t Dev. Cell |v 9 |y 2005 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.7554/eLife.16036 |2 Crossref |u Kukulski, W., Picco, A., Specht, T., Briggs, J. A. & Kaksonen, M. Clathrin modulates vesicle scission, but not invagination shape, in yeast endocytosis. Elife 5, (2016). |
999 | C | 5 | |a 10.1126/science.3116672 |9 -- missing cx lookup -- |1 SK Lemmon |p 504 - |2 Crossref |u Lemmon, S. K. & Jones, E. W. Clathrin requirement for normal growth of yeast. Science 238, 504–509 (1987). |t Science |v 238 |y 1987 |
999 | C | 5 | |a 10.1038/nature03079 |9 -- missing cx lookup -- |1 A Fotin |p 573 - |2 Crossref |u Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004). |t Nature |v 432 |y 2004 |
999 | C | 5 | |a 10.1073/pnas.97.3.1096 |9 -- missing cx lookup -- |1 E ter Haar |p 1096 - |2 Crossref |u ter Haar, E., Harrison, S. C. & Kirchhausen, T. Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc. Natl Acad. Sci. 97, 1096–1100 (2000). |t Proc. Natl Acad. Sci. |v 97 |y 2000 |
999 | C | 5 | |a 10.1038/nsmb736 |9 -- missing cx lookup -- |1 AE Miele |p 242 - |2 Crossref |u Miele, A. E., Watson, P. J., Evans, P. R., Traub, L. M. & Owen, D. J. Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller. Nat. Struct. Mol. Biol. 11, 242–248 (2004). |t Nat. Struct. Mol. Biol. |v 11 |y 2004 |
999 | C | 5 | |a 10.1074/jbc.M109.023366 |9 -- missing cx lookup -- |1 DS Kang |p 29860 - |2 Crossref |u Kang, D. S. et al. Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. J. Biol. Chem. 284, 29860–29872 (2009). |t J. Biol. Chem. |v 284 |y 2009 |
999 | C | 5 | |a 10.1111/j.1600-0854.2011.01289.x |9 -- missing cx lookup -- |1 AK Willox |p 70 - |2 Crossref |u Willox, A. K. & Royle, S. J. Functional analysis of interaction sites on the N-terminal domain of clathrin heavy chain. Traffic 13, 70–81 (2012). |t Traffic |v 13 |y 2012 |
999 | C | 5 | |a 10.1021/acs.biochem.5b00065 |9 -- missing cx lookup -- |1 Y Zhuo |p 2571 - |2 Crossref |u Zhuo, Y. et al. Nuclear magnetic resonance structural mapping reveals promiscuous interactions between clathrin-box motif sequences and the n-terminal domain of the clathrin heavy chain. Biochemistry 54, 2571–2580 (2015). |t Biochemistry |v 54 |y 2015 |
999 | C | 5 | |a 10.1111/tra.12457 |9 -- missing cx lookup -- |1 J Muenzner |p 44 - |2 Crossref |u Muenzner, J., Traub, L. M., Kelly, B. T. & Graham, S. C. Cellular and viral peptides bind multiple sites on the N-terminal domain of clathrin. Traffic 18, 44–57 (2017). |t Traffic |v 18 |y 2017 |
999 | C | 5 | |a 10.1093/emboj/18.16.4383 |9 -- missing cx lookup -- |1 B Wendland |p 4383 - |2 Crossref |u Wendland, B., Steece, K. E. & Emr, S. D. Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J. 18, 4383–4393 (1999). |t EMBO J. |v 18 |y 1999 |
999 | C | 5 | |a 10.1073/pnas.0510513103 |9 -- missing cx lookup -- |1 RC Aguilar |p 4116 - |2 Crossref |u Aguilar, R. C. et al. Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins. Proc. Natl Acad. Sci. USA 103, 4116–4121 (2006). |t Proc. Natl Acad. Sci. USA |v 103 |y 2006 |
999 | C | 5 | |a 10.1016/j.devcel.2005.04.014 |9 -- missing cx lookup -- |1 TM Newpher |p 87 - |2 Crossref |u Newpher, T. M., Smith, R. P., Lemmon, V. & Lemmon, S. K. In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast. Dev. Cell 9, 87–98 (2005). |t Dev. Cell |v 9 |y 2005 |
999 | C | 5 | |a 10.1091/mbc.e07-10-1019 |9 -- missing cx lookup -- |1 L Maldonado-Báez |p 2936 - |2 Crossref |u Maldonado-Báez, L. et al. Interaction between Epsin/Yap180 adaptors and the scaffolds Ede1/Pan1 is required for endocytosis. Mol. Biol. Cell 19, 2936–2948 (2008). |t Mol. Biol. Cell |v 19 |y 2008 |
999 | C | 5 | |a 10.1091/mbc.e06-05-0410 |9 -- missing cx lookup -- |1 G Costaguta |p 3907 - |2 Crossref |u Costaguta, G., Duncan, M. C., Fernández, G. E., Huang, G. H. & Payne, G. S. Distinct roles for TGN/endosome epsin-like adaptors Ent3p and Ent5p. Mol. Biol. Cell 17, 3907–3920 (2006). |t Mol. Biol. Cell |v 17 |y 2006 |
999 | C | 5 | |a 10.1038/s41467-017-02443-x |1 MM Garcia-Alai |9 -- missing cx lookup -- |2 Crossref |u Garcia-Alai, M. M. et al. Epsin and Sla2 form assemblies through phospholipid interfaces. Nat. Commun. 9, 328 (2018). |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1016/j.devcel.2015.02.023 |9 -- missing cx lookup -- |1 M Skruzny |p 150 - |2 Crossref |u Skruzny, M. et al. An organized co-assembly of clathrin adaptors is essential for endocytosis. Dev. Cell 33, 150–162 (2015). |t Dev. Cell |v 33 |y 2015 |
999 | C | 5 | |a 10.1073/pnas.1207011109 |9 -- missing cx lookup -- |1 M Skruzny |p E2533 - |2 Crossref |u Skruzny, M. et al. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc. Natl Acad. Sci. USA 109, E2533–E2542 (2012). |t Proc. Natl Acad. Sci. USA |v 109 |y 2012 |
999 | C | 5 | |a 10.1126/science.291.5506.1047 |9 -- missing cx lookup -- |1 T Itoh |p 1047 - |2 Crossref |u Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001). |t Science |v 291 |y 2001 |
999 | C | 5 | |a 10.1038/nature01020 |9 -- missing cx lookup -- |1 MGJ Ford |p 361 - |2 Crossref |u Ford, M. G. J. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002). |t Nature |v 419 |y 2002 |
999 | C | 5 | |a 10.1074/jbc.273.25.15779 |9 -- missing cx lookup -- |1 K Homma |p 15779 - |2 Crossref |u Homma, K. et al. Phosphatidylinositol-4-phosphate 5-kinase localized on the plasma membrane is essential for yeast cell morphogenesis. J. Biol. Chem. 273, 15779–15786 (1998). |t J. Biol. Chem. |v 273 |y 1998 |
999 | C | 5 | |a 10.1038/s41467-021-23151-7 |1 J Lizarrondo |9 -- missing cx lookup -- |2 Crossref |u Lizarrondo, J. et al. Structure of the endocytic adaptor complex reveals the basis for efficient membrane anchoring during clathrin-mediated endocytosis. Nat. Commun. 12, 2889 (2021). |t Nat. Commun. |v 12 |y 2021 |
999 | C | 5 | |a 10.1242/jcs.041137 |9 -- missing cx lookup -- |1 D Mukherjee |p 2453 - |2 Crossref |u Mukherjee, D. et al. The yeast endocytic protein Epsin 2 functions in a cell-division signaling pathway. J. Cell Sci. 122, 2453–2463 (2009). |t J. Cell Sci. |v 122 |y 2009 |
999 | C | 5 | |a 10.1093/nar/gkx1077 |9 -- missing cx lookup -- |1 M Gouw |p D428 - |2 Crossref |u Gouw, M. et al. The eukaryotic linear motif resource-2018 update. Nucleic Acids Res. 46, D428–D434 (2018). |t Nucleic Acids Res |v 46 |y 2018 |
999 | C | 5 | |a 10.1093/nar/gkx238 |9 -- missing cx lookup -- |1 I Krystkowiak |p W464 - |2 Crossref |u Krystkowiak, I. & Davey, N. E. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res. 45, W464–W469 (2017). |t Nucleic Acids Res |v 45 |y 2017 |
999 | C | 5 | |a 10.1016/S0962-8924(01)02043-8 |9 -- missing cx lookup -- |1 EC Dell’Angelica |p 315 - |2 Crossref |u Dell’Angelica, E. C. Clathrin-binding proteins: got a motif? Join the network! Trends Cell Biol. 11, 315–318 (2001). |t Trends Cell Biol. |v 11 |y 2001 |
999 | C | 5 | |a 10.1016/S0960-9822(03)00579-7 |9 -- missing cx lookup -- |1 KR Henry |p 1564 - |2 Crossref |u Henry, K. R. et al. The actin-regulating kinase Prk1p negatively regulates Scd5p, a suppressor of clathrin deficiency, in actin organization and endocytosis. Curr. Biol. 13, 1564–1569 (2003). |t Curr. Biol. |v 13 |y 2003 |
999 | C | 5 | |a 10.1101/2021.10.04.463034 |1 R Evans |9 -- missing cx lookup -- |2 Crossref |u Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022). |t bioRxiv |y 2022 |
999 | C | 5 | |a 10.1038/s41586-024-07487-w |9 -- missing cx lookup -- |1 J Abramson |p 493 - |2 Crossref |u Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024). |t Nature |v 630 |y 2024 |
999 | C | 5 | |a 10.1093/genetics/165.4.1661 |9 -- missing cx lookup -- |1 JJ Baggett |p 1661 - |2 Crossref |u Baggett, J. J., D’Aquino, K. E. & Wendland, B. The Sla2p talin domain plays a role in endocytosis in Saccharomyces cerevisiae. Genetics 165, 1661–1674 (2003). |t Genetics |v 165 |y 2003 |
999 | C | 5 | |a 10.1111/j.1749-6632.1949.tb27297.x |9 -- missing cx lookup -- |1 G Scatchard |p 660 - |2 Crossref |u Scatchard, G. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672 (1949). |t Ann. N. Y. Acad. Sci. |v 51 |y 1949 |
999 | C | 5 | |2 Crossref |u Wilkinson, K. D. Quantitative Analysis of Protein-Protein Interactions. in Protein-Protein Interactions: Methods and Applications (ed. Fu, H.) 15–31 (Humana Press, Totowa, NJ, 2004). |
999 | C | 5 | |a 10.1016/j.devcel.2013.06.019 |9 -- missing cx lookup -- |1 F Aguet |p 279 - |2 Crossref |u Aguet, F., Antonescu, C. N., Mettlen, M., Schmid, S. L. & Danuser, G. Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev. Cell 26, 279–291 (2013). |t Dev. Cell |v 26 |y 2013 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.7554/eLife.72865 |2 Crossref |u Kozak, M. & Kaksonen, M. Condensation of Ede1 promotes the initiation of endocytosis. Elife 11, (2022). |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1101/2023.08.21.554139 |2 Crossref |u Yuan, F. et al. Ubiquitin-driven protein condensation promotes clathrin-mediated endocytosis. bioRxiv 2023.08.21.554139 https://doi.org/10.1101/2023.08.21.554139 (2023). |
999 | C | 5 | |2 Crossref |u Michaelis, A. C. et al. The social and structural architecture of the yeast protein interactome. Nature 1–9 (2023). |
999 | C | 5 | |a 10.15252/msb.202110584 |1 C Benz |9 -- missing cx lookup -- |2 Crossref |u Benz, C. et al. Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Mol. Syst. Biol. 18, e10584 (2022). |t Mol. Syst. Biol. |v 18 |y 2022 |
999 | C | 5 | |a 10.1038/s41467-018-03533-0 |1 D Bucher |9 -- missing cx lookup -- |2 Crossref |u Bucher, D. et al. Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis. Nat. Commun. 9, 1109 (2018). |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1083/jcb.202206038 |2 Crossref |u Mund, M. et al. Clathrin coats partially preassemble and subsequently bend during endocytosis. J. Cell Biol. 222, (2023). |
999 | C | 5 | |a 10.1107/S0907444913000061 |9 -- missing cx lookup -- |1 PR Evans |p 1204 - |2 Crossref |u Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 69, 1204–1214 (2013). |t Acta Crystallogr. D. Biol. Crystallogr. |v 69 |y 2013 |
999 | C | 5 | |a 10.1107/S0907444909042589 |9 -- missing cx lookup -- |1 A Vagin |p 22 - |2 Crossref |u Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D. Biol. Crystallogr. 66, 22–25 (2010). |t Acta Crystallogr. D. Biol. Crystallogr. |v 66 |y 2010 |
999 | C | 5 | |a 10.1038/nprot.2015.053 |9 -- missing cx lookup -- |1 LA Kelley |p 845 - |2 Crossref |u Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015). |t Nat. Protoc. |v 10 |y 2015 |
999 | C | 5 | |a 10.1107/S0907444911001314 |9 -- missing cx lookup -- |1 GN Murshudov |p 355 - |2 Crossref |u Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. Biol. Crystallogr. 67, 355–367 (2011). |t Acta Crystallogr. D. Biol. Crystallogr. |v 67 |y 2011 |
999 | C | 5 | |a 10.1107/S0907444910007493 |9 -- missing cx lookup -- |1 P Emsley |p 486 - |2 Crossref |u Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010). |t Acta Crystallogr. D. Biol. Crystallogr. |v 66 |y 2010 |
999 | C | 5 | |a 10.1107/S2059798317016035 |9 -- missing cx lookup -- |1 L Potterton |p 68 - |2 Crossref |u Potterton, L. et al. CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr D. Struct. Biol. 74, 68–84 (2018). |t Acta Crystallogr D. Struct. Biol. |v 74 |y 2018 |
999 | C | 5 | |a 10.1107/S2059798319011471 |9 -- missing cx lookup -- |1 D Liebschner |p 861 - |2 Crossref |u Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D. Struct. Biol. 75, 861–877 (2019). |t Acta Crystallogr D. Struct. Biol. |v 75 |y 2019 |
999 | C | 5 | |a 10.1107/S0907444912001308 |9 -- missing cx lookup -- |1 PV Afonine |p 352 - |2 Crossref |u Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D. Biol. Crystallogr. 68, 352–367 (2012). |t Acta Crystallogr. D. Biol. Crystallogr. |v 68 |y 2012 |
999 | C | 5 | |a 10.1107/S2059798318002425 |9 -- missing cx lookup -- |1 TI Croll |p 519 - |2 Crossref |u Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D. Struct. Biol. 74, 519–530 (2018). |t Acta Crystallogr D. Struct. Biol. |v 74 |y 2018 |
999 | C | 5 | |a 10.1093/bioinformatics/btz184 |9 -- missing cx lookup -- |1 J Delgado |p 4168 - |2 Crossref |u Delgado, J., Radusky, L. G., Cianferoni, D. & Serrano, L. FoldX 5.0: working with RNA, small molecules and a new graphical interface. Bioinformatics 35, 4168–4169 (2019). |t Bioinformatics |v 35 |y 2019 |
999 | C | 5 | |a 10.1107/S2059798321008998 |9 -- missing cx lookup -- |1 O Burastero |p 1241 - |2 Crossref |u Burastero, O. et al. eSPC: an online data-analysis platform for molecular biophysics. Acta Crystallogr D. Struct. Biol. 77, 1241–1250 (2021). |t Acta Crystallogr D. Struct. Biol. |v 77 |y 2021 |
999 | C | 5 | |a 10.1038/s41598-021-88985-z |1 S Niebling |9 -- missing cx lookup -- |2 Crossref |u Niebling, S. et al. FoldAffinity: binding affinities from nDSF experiments. Sci. Rep. 11, 9572 (2021). |t Sci. Rep. |v 11 |y 2021 |
999 | C | 5 | |a 10.1038/nprot.2007.13 |9 -- missing cx lookup -- |1 RD Gietz |p 31 - |2 Crossref |u Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007). |t Nat. Protoc. |v 2 |y 2007 |
999 | C | 5 | |a 10.1002/yea.1142 |9 -- missing cx lookup -- |1 C Janke |p 947 - |2 Crossref |u Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004). |t Yeast |v 21 |y 2004 |
999 | C | 5 | |a 10.15252/msb.20199009 |9 -- missing cx lookup -- |1 M Skruzny |p e9009 - |2 Crossref |u Skruzny, M., Pohl, E., Gnoth, S., Malengo, G. & Sourjik, V. The protein architecture of the endocytic coat analyzed by FRET microscopy. Mol. Syst. Biol. 16, e9009 (2020). |t Mol. Syst. Biol. |v 16 |y 2020 |
999 | C | 5 | |a 10.1038/nmeth.2019 |9 -- missing cx lookup -- |1 J Schindelin |p 676 - |2 Crossref |u Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). |t Nat. Methods |v 9 |y 2012 |
999 | C | 5 | |a 10.1016/j.bbrc.2007.05.180 |9 -- missing cx lookup -- |1 D Stepensky |p 752 - |2 Crossref |u Stepensky, D. FRETcalc plugin for calculation of FRET in non-continuous intracellular compartments. Biochem. Biophys. Res. Commun. 359, 752–758 (2007). |t Biochem. Biophys. Res. Commun. |v 359 |y 2007 |
999 | C | 5 | |a 10.21105/joss.03167 |9 -- missing cx lookup -- |1 I Patil |p 3167 - |2 Crossref |u Patil, I. Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Softw. 6, 3167 (2021). |t J. Open Source Softw. |v 6 |y 2021 |
999 | C | 5 | |a 10.1093/biomet/61.1.165 |9 -- missing cx lookup -- |1 KK Yuen |p 165 - |2 Crossref |u Yuen, K. K. The two-sample trimmed t for unequal population variances. Biometrika 61, 165–170 (1974). |t Biometrika |v 61 |y 1974 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|