000619947 001__ 619947
000619947 005__ 20250811212110.0
000619947 0247_ $$2doi$$a10.1038/s41467-024-54037-z
000619947 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-08038
000619947 0247_ $$2altmetric$$aaltmetric:170406760
000619947 0247_ $$2pmid$$apmid:39511183
000619947 0247_ $$2WOS$$aWOS:001352440200007
000619947 0247_ $$2openalex$$aopenalex:W4404125482
000619947 037__ $$aPUBDB-2024-08038
000619947 041__ $$aEnglish
000619947 082__ $$a500
000619947 1001_ $$aDefelipe, Lucas A.$$b0
000619947 245__ $$aSubtleties in Clathrin heavy chain binding boxes provide selectivity among adaptor proteins of budding yeast
000619947 260__ $$a[London]$$bNature Publishing Group UK$$c2024
000619947 3367_ $$2DRIVER$$aarticle
000619947 3367_ $$2DataCite$$aOutput Types/Journal article
000619947 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754897774_2650031
000619947 3367_ $$2BibTeX$$aARTICLE
000619947 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000619947 3367_ $$00$$2EndNote$$aJournal Article
000619947 520__ $$aClathrin forms a triskelion, or three-legged, network that regulates cellular processes by facilitating cargo internalization and trafficking in eukaryotes. Its N-terminal domain is crucial for interacting with adaptor proteins, which link clathrin to the membrane and engage with specific cargo. The N-terminal domain contains up to four adaptor-binding sites, though their role in preferential occupancy by adaptor proteins remains unclear. In this study, we examine the binding hierarchy of adaptors for clathrin, using integrative biophysical and structural approaches, along with in vivo functional experiments. We find that yeast epsin Ent5 has the highest affinity for clathrin, highlighting its key role in cellular trafficking. Epsins Ent1 and Ent2, crucial for endocytosis but thought to have redundant functions, show distinct binding patterns. Ent1 exhibits stronger interactions with clathrin than Ent2, suggesting a functional divergence toward actin binding. These results offer molecular insights into adaptor protein selectivity, suggesting they competitively bind clathrin while also targeting three different clathrin sites.
000619947 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000619947 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000619947 542__ $$2Crossref$$i2024-11-07$$uhttps://creativecommons.org/licenses/by/4.0
000619947 542__ $$2Crossref$$i2024-11-07$$uhttps://creativecommons.org/licenses/by/4.0
000619947 588__ $$aDataset connected to DataCite
000619947 693__ $$0EXP:(DE-H253)P-P13-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P13-20150101$$aPETRA III$$fPETRA Beamline P13$$x0
000619947 693__ $$0EXP:(DE-H253)P-P14-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P14-20150101$$aPETRA III$$fPETRA Beamline P14$$x1
000619947 693__ $$0EXP:(DE-H253)SPC-20250101$$1EXP:(DE-H253)SPC-20250101$$aSample Preparation and Characterisation Facility$$x2
000619947 693__ $$0EXP:(DE-H253)ALFM-20250101$$1EXP:(DE-H253)ALFM-20250101$$aAdvanced Light and Fluorescence Microscopy Facility$$x3
000619947 7001_ $$0P:(DE-H253)PIP1025998$$aVeith, Katharina$$b1
000619947 7001_ $$aBurastero, Osvaldo$$b2
000619947 7001_ $$aKupriianova, Tatiana$$b3
000619947 7001_ $$0P:(DE-H253)PIP1021139$$aBento, Isabel$$b4
000619947 7001_ $$0P:(DE-HGF)0$$aSkruzny, Michal$$b5
000619947 7001_ $$0P:(DE-H253)PIP1083842$$aKoelbel, Knut$$b6
000619947 7001_ $$0P:(DE-H253)PIP1014042$$aUetrecht, Charlotte$$b7
000619947 7001_ $$aThuenauer, Roland$$b8
000619947 7001_ $$00000-0002-5200-7816$$aGarcía-Alai, Maria M.$$b9$$eCorresponding author
000619947 77318 $$2Crossref$$3journal-article$$a10.1038/s41467-024-54037-z$$bSpringer Science and Business Media LLC$$d2024-11-07$$n1$$p9655$$tNature Communications$$v15$$x2041-1723$$y2024
000619947 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-54037-z$$gVol. 15, no. 1, p. 9655$$n1$$p9655$$tNature Communications$$v15$$x2041-1723$$y2024
000619947 8564_ $$uhttps://bib-pubdb1.desy.de/record/619947/files/Defelipe_et_al-2024-Nature_Communications.pdf$$yOpenAccess
000619947 8564_ $$uhttps://bib-pubdb1.desy.de/record/619947/files/Defelipe_et_al-2024-Nature_Communications.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000619947 909CO $$ooai:bib-pubdb1.desy.de:619947$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000619947 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1025998$$aCentre for Structural Systems Biology$$b1$$kCSSB
000619947 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1025998$$aExternal Institute$$b1$$kExtern
000619947 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1021139$$aExternal Institute$$b4$$kExtern
000619947 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1083842$$aCentre for Structural Systems Biology$$b6$$kCSSB
000619947 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083842$$aExternal Institute$$b6$$kExtern
000619947 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083842$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000619947 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1014042$$aCentre for Structural Systems Biology$$b7$$kCSSB
000619947 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1014042$$aEuropean XFEL$$b7$$kXFEL.EU
000619947 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1014042$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000619947 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000619947 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000619947 9141_ $$y2024
000619947 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000619947 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000619947 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000619947 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000619947 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000619947 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000619947 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000619947 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
000619947 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000619947 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000619947 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
000619947 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
000619947 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
000619947 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000619947 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
000619947 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
000619947 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000619947 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000619947 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000619947 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000619947 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
000619947 9201_ $$0I:(DE-H253)CSSB-LIV_DESY-CU-20220525$$kCSSB-LIV/DESY-CU$$lCSSB - Leibniz-Institut für Experimentelle Virologie (LIV) / DESY - Charlotte Uetrecht$$x0
000619947 9201_ $$0I:(DE-H253)CSSB-CF-ALFM-20210629$$kCSSB-CF-ALFM$$lCSSB-CF-ALFM$$x1
000619947 9201_ $$0I:(DE-H253)CSSB-CF-SPC-20210520$$kCSSB-CF-SPC$$lCSSB-CF-SPC$$x2
000619947 980__ $$ajournal
000619947 980__ $$aVDB
000619947 980__ $$aI:(DE-H253)CSSB-LIV_DESY-CU-20220525
000619947 980__ $$aI:(DE-H253)CSSB-CF-ALFM-20210629
000619947 980__ $$aI:(DE-H253)CSSB-CF-SPC-20210520
000619947 980__ $$aUNRESTRICTED
000619947 9801_ $$aFullTexts
000619947 999C5 $$1AV Vieira$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.274.5295.2086$$p2086 -$$tScience$$uVieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).$$v274$$y1996
000619947 999C5 $$1LM Traub$$2Crossref$$9-- missing cx lookup --$$a10.1101/cshperspect.a016790$$pa016790 -$$tCold Spring Harb. Perspect. Biol.$$uTraub, L. M. & Bonifacino, J. S. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 5, a016790 (2013).$$v5$$y2013
000619947 999C5 $$1C Le Roy$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrm1571$$p112 -$$tNat. Rev. Mol. Cell Biol.$$uLe Roy, C. & Wrana, J. L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat. Rev. Mol. Cell Biol. 6, 112–126 (2005).$$v6$$y2005
000619947 999C5 $$1E Etxeberria$$2Crossref$$9-- missing cx lookup --$$a10.1093/pcp/pci044$$p474 -$$tPlant Cell Physiol.$$uEtxeberria, E., Baroja-Fernandez, E., Muñoz, F. J. & Pozueta-Romero, J. Sucrose-inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell Physiol. 46, 474–481 (2005).$$v46$$y2005
000619947 999C5 $$1SS Johnson$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M110.162883$$p35792 -$$tJ. Biol. Chem.$$uJohnson, S. S. et al. Regulation of yeast nutrient permease endocytosis by ATP-binding cassette transporters and a seven-transmembrane protein, RSB1. J. Biol. Chem. 285, 35792–35802 (2010).$$v285$$y2010
000619947 999C5 $$1E Blanchard$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.00024-06$$p6964 -$$tJ. Virol.$$uBlanchard, E. et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol. 80, 6964–6972 (2006).$$v80$$y2006
000619947 999C5 $$1JJH Chu$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.78.19.10543-10555.2004$$p10543 -$$tJ. Virol.$$uChu, J. J. H. & Ng, M. L. Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J. Virol. 78, 10543–10555 (2004).$$v78$$y2004
000619947 999C5 $$1A Bayati$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jbc.2021.100306$$p100306 -$$tJ. Biol. Chem.$$uBayati, A., Kumar, R., Francis, V. & McPherson, P. S. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J. Biol. Chem. 296, 100306 (2021).$$v296$$y2021
000619947 999C5 $$1J Mercer$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-biochem-060208-104626$$p803 -$$tAnnu. Rev. Biochem.$$uMercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–833 (2010).$$v79$$y2010
000619947 999C5 $$1E Veiga$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncb1292$$p894 -$$tNat. Cell Biol.$$uVeiga, E. & Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat. Cell Biol. 7, 894–900 (2005).$$v7$$y2005
000619947 999C5 $$1M Kaksonen$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrm.2017.132$$p313 -$$tNat. Rev. Mol. Cell Biol.$$uKaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).$$v19$$y2018
000619947 999C5 $$1KL Morris$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41594-019-0292-0$$p890 -$$tNat. Struct. Mol. Biol.$$uMorris, K. L. et al. Cryo-EM of multiple cage architectures reveals a universal mode of clathrin self-assembly. Nat. Struct. Mol. Biol. 26, 890–898 (2019).$$v26$$y2019
000619947 999C5 $$1D Perrais$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2005.10.002$$p581 -$$tDev. Cell$$uPerrais, D. & Merrifield, C. J. Dynamics of endocytic vesicle creation. Dev. Cell 9, 581–592 (2005).$$v9$$y2005
000619947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.16036$$uKukulski, W., Picco, A., Specht, T., Briggs, J. A. & Kaksonen, M. Clathrin modulates vesicle scission, but not invagination shape, in yeast endocytosis. Elife 5, (2016).
000619947 999C5 $$1SK Lemmon$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.3116672$$p504 -$$tScience$$uLemmon, S. K. & Jones, E. W. Clathrin requirement for normal growth of yeast. Science 238, 504–509 (1987).$$v238$$y1987
000619947 999C5 $$1A Fotin$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature03079$$p573 -$$tNature$$uFotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).$$v432$$y2004
000619947 999C5 $$1E ter Haar$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.97.3.1096$$p1096 -$$tProc. Natl Acad. Sci.$$uter Haar, E., Harrison, S. C. & Kirchhausen, T. Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc. Natl Acad. Sci. 97, 1096–1100 (2000).$$v97$$y2000
000619947 999C5 $$1AE Miele$$2Crossref$$9-- missing cx lookup --$$a10.1038/nsmb736$$p242 -$$tNat. Struct. Mol. Biol.$$uMiele, A. E., Watson, P. J., Evans, P. R., Traub, L. M. & Owen, D. J. Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller. Nat. Struct. Mol. Biol. 11, 242–248 (2004).$$v11$$y2004
000619947 999C5 $$1DS Kang$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M109.023366$$p29860 -$$tJ. Biol. Chem.$$uKang, D. S. et al. Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. J. Biol. Chem. 284, 29860–29872 (2009).$$v284$$y2009
000619947 999C5 $$1AK Willox$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1600-0854.2011.01289.x$$p70 -$$tTraffic$$uWillox, A. K. & Royle, S. J. Functional analysis of interaction sites on the N-terminal domain of clathrin heavy chain. Traffic 13, 70–81 (2012).$$v13$$y2012
000619947 999C5 $$1Y Zhuo$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.biochem.5b00065$$p2571 -$$tBiochemistry$$uZhuo, Y. et al. Nuclear magnetic resonance structural mapping reveals promiscuous interactions between clathrin-box motif sequences and the n-terminal domain of the clathrin heavy chain. Biochemistry 54, 2571–2580 (2015).$$v54$$y2015
000619947 999C5 $$1J Muenzner$$2Crossref$$9-- missing cx lookup --$$a10.1111/tra.12457$$p44 -$$tTraffic$$uMuenzner, J., Traub, L. M., Kelly, B. T. & Graham, S. C. Cellular and viral peptides bind multiple sites on the N-terminal domain of clathrin. Traffic 18, 44–57 (2017).$$v18$$y2017
000619947 999C5 $$1B Wendland$$2Crossref$$9-- missing cx lookup --$$a10.1093/emboj/18.16.4383$$p4383 -$$tEMBO J.$$uWendland, B., Steece, K. E. & Emr, S. D. Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J. 18, 4383–4393 (1999).$$v18$$y1999
000619947 999C5 $$1RC Aguilar$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0510513103$$p4116 -$$tProc. Natl Acad. Sci. USA$$uAguilar, R. C. et al. Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins. Proc. Natl Acad. Sci. USA 103, 4116–4121 (2006).$$v103$$y2006
000619947 999C5 $$1TM Newpher$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2005.04.014$$p87 -$$tDev. Cell$$uNewpher, T. M., Smith, R. P., Lemmon, V. & Lemmon, S. K. In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast. Dev. Cell 9, 87–98 (2005).$$v9$$y2005
000619947 999C5 $$1L Maldonado-Báez$$2Crossref$$9-- missing cx lookup --$$a10.1091/mbc.e07-10-1019$$p2936 -$$tMol. Biol. Cell$$uMaldonado-Báez, L. et al. Interaction between Epsin/Yap180 adaptors and the scaffolds Ede1/Pan1 is required for endocytosis. Mol. Biol. Cell 19, 2936–2948 (2008).$$v19$$y2008
000619947 999C5 $$1G Costaguta$$2Crossref$$9-- missing cx lookup --$$a10.1091/mbc.e06-05-0410$$p3907 -$$tMol. Biol. Cell$$uCostaguta, G., Duncan, M. C., Fernández, G. E., Huang, G. H. & Payne, G. S. Distinct roles for TGN/endosome epsin-like adaptors Ent3p and Ent5p. Mol. Biol. Cell 17, 3907–3920 (2006).$$v17$$y2006
000619947 999C5 $$1MM Garcia-Alai$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-02443-x$$tNat. Commun.$$uGarcia-Alai, M. M. et al. Epsin and Sla2 form assemblies through phospholipid interfaces. Nat. Commun. 9, 328 (2018).$$v9$$y2018
000619947 999C5 $$1M Skruzny$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2015.02.023$$p150 -$$tDev. Cell$$uSkruzny, M. et al. An organized co-assembly of clathrin adaptors is essential for endocytosis. Dev. Cell 33, 150–162 (2015).$$v33$$y2015
000619947 999C5 $$1M Skruzny$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1207011109$$pE2533 -$$tProc. Natl Acad. Sci. USA$$uSkruzny, M. et al. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc. Natl Acad. Sci. USA 109, E2533–E2542 (2012).$$v109$$y2012
000619947 999C5 $$1T Itoh$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.291.5506.1047$$p1047 -$$tScience$$uItoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001).$$v291$$y2001
000619947 999C5 $$1MGJ Ford$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01020$$p361 -$$tNature$$uFord, M. G. J. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).$$v419$$y2002
000619947 999C5 $$1K Homma$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.273.25.15779$$p15779 -$$tJ. Biol. Chem.$$uHomma, K. et al. Phosphatidylinositol-4-phosphate 5-kinase localized on the plasma membrane is essential for yeast cell morphogenesis. J. Biol. Chem. 273, 15779–15786 (1998).$$v273$$y1998
000619947 999C5 $$1J Lizarrondo$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-021-23151-7$$tNat. Commun.$$uLizarrondo, J. et al. Structure of the endocytic adaptor complex reveals the basis for efficient membrane anchoring during clathrin-mediated endocytosis. Nat. Commun. 12, 2889 (2021).$$v12$$y2021
000619947 999C5 $$1D Mukherjee$$2Crossref$$9-- missing cx lookup --$$a10.1242/jcs.041137$$p2453 -$$tJ. Cell Sci.$$uMukherjee, D. et al. The yeast endocytic protein Epsin 2 functions in a cell-division signaling pathway. J. Cell Sci. 122, 2453–2463 (2009).$$v122$$y2009
000619947 999C5 $$1M Gouw$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkx1077$$pD428 -$$tNucleic Acids Res$$uGouw, M. et al. The eukaryotic linear motif resource-2018 update. Nucleic Acids Res. 46, D428–D434 (2018).$$v46$$y2018
000619947 999C5 $$1I Krystkowiak$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkx238$$pW464 -$$tNucleic Acids Res$$uKrystkowiak, I. & Davey, N. E. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res. 45, W464–W469 (2017).$$v45$$y2017
000619947 999C5 $$1EC Dell’Angelica$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0962-8924(01)02043-8$$p315 -$$tTrends Cell Biol.$$uDell’Angelica, E. C. Clathrin-binding proteins: got a motif? Join the network! Trends Cell Biol. 11, 315–318 (2001).$$v11$$y2001
000619947 999C5 $$1KR Henry$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0960-9822(03)00579-7$$p1564 -$$tCurr. Biol.$$uHenry, K. R. et al. The actin-regulating kinase Prk1p negatively regulates Scd5p, a suppressor of clathrin deficiency, in actin organization and endocytosis. Curr. Biol. 13, 1564–1569 (2003).$$v13$$y2003
000619947 999C5 $$1R Evans$$2Crossref$$9-- missing cx lookup --$$a10.1101/2021.10.04.463034$$tbioRxiv$$uEvans, R. et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).$$y2022
000619947 999C5 $$1J Abramson$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-024-07487-w$$p493 -$$tNature$$uAbramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).$$v630$$y2024
000619947 999C5 $$1JJ Baggett$$2Crossref$$9-- missing cx lookup --$$a10.1093/genetics/165.4.1661$$p1661 -$$tGenetics$$uBaggett, J. J., D’Aquino, K. E. & Wendland, B. The Sla2p talin domain plays a role in endocytosis in Saccharomyces cerevisiae. Genetics 165, 1661–1674 (2003).$$v165$$y2003
000619947 999C5 $$1G Scatchard$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1749-6632.1949.tb27297.x$$p660 -$$tAnn. N. Y. Acad. Sci.$$uScatchard, G. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672 (1949).$$v51$$y1949
000619947 999C5 $$2Crossref$$uWilkinson, K. D. Quantitative Analysis of Protein-Protein Interactions. in Protein-Protein Interactions: Methods and Applications (ed. Fu, H.) 15–31 (Humana Press, Totowa, NJ, 2004).
000619947 999C5 $$1F Aguet$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2013.06.019$$p279 -$$tDev. Cell$$uAguet, F., Antonescu, C. N., Mettlen, M., Schmid, S. L. & Danuser, G. Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev. Cell 26, 279–291 (2013).$$v26$$y2013
000619947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.72865$$uKozak, M. & Kaksonen, M. Condensation of Ede1 promotes the initiation of endocytosis. Elife 11, (2022).
000619947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2023.08.21.554139$$uYuan, F. et al. Ubiquitin-driven protein condensation promotes clathrin-mediated endocytosis. bioRxiv 2023.08.21.554139 https://doi.org/10.1101/2023.08.21.554139 (2023).
000619947 999C5 $$2Crossref$$uMichaelis, A. C. et al. The social and structural architecture of the yeast protein interactome. Nature 1–9 (2023).
000619947 999C5 $$1C Benz$$2Crossref$$9-- missing cx lookup --$$a10.15252/msb.202110584$$tMol. Syst. Biol.$$uBenz, C. et al. Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Mol. Syst. Biol. 18, e10584 (2022).$$v18$$y2022
000619947 999C5 $$1D Bucher$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-03533-0$$tNat. Commun.$$uBucher, D. et al. Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis. Nat. Commun. 9, 1109 (2018).$$v9$$y2018
000619947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.202206038$$uMund, M. et al. Clathrin coats partially preassemble and subsequently bend during endocytosis. J. Cell Biol. 222, (2023).
000619947 999C5 $$1PR Evans$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444913000061$$p1204 -$$tActa Crystallogr. D. Biol. Crystallogr.$$uEvans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 69, 1204–1214 (2013).$$v69$$y2013
000619947 999C5 $$1A Vagin$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444909042589$$p22 -$$tActa Crystallogr. D. Biol. Crystallogr.$$uVagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D. Biol. Crystallogr. 66, 22–25 (2010).$$v66$$y2010
000619947 999C5 $$1LA Kelley$$2Crossref$$9-- missing cx lookup --$$a10.1038/nprot.2015.053$$p845 -$$tNat. Protoc.$$uKelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).$$v10$$y2015
000619947 999C5 $$1GN Murshudov$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444911001314$$p355 -$$tActa Crystallogr. D. Biol. Crystallogr.$$uMurshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. Biol. Crystallogr. 67, 355–367 (2011).$$v67$$y2011
000619947 999C5 $$1P Emsley$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444910007493$$p486 -$$tActa Crystallogr. D. Biol. Crystallogr.$$uEmsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).$$v66$$y2010
000619947 999C5 $$1L Potterton$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798317016035$$p68 -$$tActa Crystallogr D. Struct. Biol.$$uPotterton, L. et al. CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr D. Struct. Biol. 74, 68–84 (2018).$$v74$$y2018
000619947 999C5 $$1D Liebschner$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798319011471$$p861 -$$tActa Crystallogr D. Struct. Biol.$$uLiebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D. Struct. Biol. 75, 861–877 (2019).$$v75$$y2019
000619947 999C5 $$1PV Afonine$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444912001308$$p352 -$$tActa Crystallogr. D. Biol. Crystallogr.$$uAfonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D. Biol. Crystallogr. 68, 352–367 (2012).$$v68$$y2012
000619947 999C5 $$1TI Croll$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798318002425$$p519 -$$tActa Crystallogr D. Struct. Biol.$$uCroll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D. Struct. Biol. 74, 519–530 (2018).$$v74$$y2018
000619947 999C5 $$1J Delgado$$2Crossref$$9-- missing cx lookup --$$a10.1093/bioinformatics/btz184$$p4168 -$$tBioinformatics$$uDelgado, J., Radusky, L. G., Cianferoni, D. & Serrano, L. FoldX 5.0: working with RNA, small molecules and a new graphical interface. Bioinformatics 35, 4168–4169 (2019).$$v35$$y2019
000619947 999C5 $$1O Burastero$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798321008998$$p1241 -$$tActa Crystallogr D. Struct. Biol.$$uBurastero, O. et al. eSPC: an online data-analysis platform for molecular biophysics. Acta Crystallogr D. Struct. Biol. 77, 1241–1250 (2021).$$v77$$y2021
000619947 999C5 $$1S Niebling$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-021-88985-z$$tSci. Rep.$$uNiebling, S. et al. FoldAffinity: binding affinities from nDSF experiments. Sci. Rep. 11, 9572 (2021).$$v11$$y2021
000619947 999C5 $$1RD Gietz$$2Crossref$$9-- missing cx lookup --$$a10.1038/nprot.2007.13$$p31 -$$tNat. Protoc.$$uGietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).$$v2$$y2007
000619947 999C5 $$1C Janke$$2Crossref$$9-- missing cx lookup --$$a10.1002/yea.1142$$p947 -$$tYeast$$uJanke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).$$v21$$y2004
000619947 999C5 $$1M Skruzny$$2Crossref$$9-- missing cx lookup --$$a10.15252/msb.20199009$$pe9009 -$$tMol. Syst. Biol.$$uSkruzny, M., Pohl, E., Gnoth, S., Malengo, G. & Sourjik, V. The protein architecture of the endocytic coat analyzed by FRET microscopy. Mol. Syst. Biol. 16, e9009 (2020).$$v16$$y2020
000619947 999C5 $$1J Schindelin$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.2019$$p676 -$$tNat. Methods$$uSchindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).$$v9$$y2012
000619947 999C5 $$1D Stepensky$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbrc.2007.05.180$$p752 -$$tBiochem. Biophys. Res. Commun.$$uStepensky, D. FRETcalc plugin for calculation of FRET in non-continuous intracellular compartments. Biochem. Biophys. Res. Commun. 359, 752–758 (2007).$$v359$$y2007
000619947 999C5 $$1I Patil$$2Crossref$$9-- missing cx lookup --$$a10.21105/joss.03167$$p3167 -$$tJ. Open Source Softw.$$uPatil, I. Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Softw. 6, 3167 (2021).$$v6$$y2021
000619947 999C5 $$1KK Yuen$$2Crossref$$9-- missing cx lookup --$$a10.1093/biomet/61.1.165$$p165 -$$tBiometrika$$uYuen, K. K. The two-sample trimmed t for unequal population variances. Biometrika 61, 165–170 (1974).$$v61$$y1974