Home > Publications database > Compatibility and combination of world W-boson mass measurements > print |
001 | 619914 | ||
005 | 20250723173133.0 | ||
024 | 7 | _ | |a 10.1140/epjc/s10052-024-12532-z |2 doi |
024 | 7 | _ | |a LHC-TeVMWWorkingGroup:2023zkn |2 INSPIRETeX |
024 | 7 | _ | |a inspire:2689656 |2 inspire |
024 | 7 | _ | |a 1434-6044 |2 ISSN |
024 | 7 | _ | |a 1434-6052 |2 ISSN |
024 | 7 | _ | |a arXiv:2308.09417 |2 arXiv |
024 | 7 | _ | |a 10.3204/PUBDB-2024-08015 |2 datacite_doi |
024 | 7 | _ | |a altmetric:163307865 |2 altmetric |
024 | 7 | _ | |a pmid:39512385 |2 pmid |
024 | 7 | _ | |a WOS:001225939600003 |2 WOS |
024 | 7 | _ | |a openalex:W4396596568 |2 openalex |
037 | _ | _ | |a PUBDB-2024-08015 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a arXiv:2308.09417 |2 arXiv |
088 | _ | _ | |a DESY-23-124 |2 DESY |
100 | 1 | _ | |a Amoroso, Simone |0 P:(DE-H253)PIP1083702 |b 0 |
245 | _ | _ | |a Compatibility and combination of world W-boson mass measurements |
260 | _ | _ | |a Heidelberg |c 2024 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1734703591_2248424 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Submitted to EPJC |
520 | _ | _ | |a The compatibility of W-boson mass measurements performed by the ATLAS, LHCb, CDF, and D0 experiments is studied using a coherent framework with theory uncertainty correlations. The measurements are combined using a number of recent sets of parton distribution functions (PDF), and are further combined with the average value of measurements from the Large Electron–Positron collider. The considered PDF sets generally have a low compatibility with a suite of global rapidity-sensitive Drell–Yan measurements. The most compatible set is CT18 due to its larger uncertainties. A combination of all $m_W$ measurements yields a value of $m_W = 80{}394.6 \pm 11.5$ MeV with the CT18 set, but has a probability of compatibility of 0.5% and is therefore disfavoured. Combinations are performed removing each measurement individually, and a 91% probability of compatibility is obtained when the CDF measurement is removed. The corresponding value of the W boson mass is $80{}369.2 \pm 13.3$ MeV, which differs by $3.6\sigma $ from the CDF value determined using the same PDF set. |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
536 | _ | _ | |a SPEAR - Standard model Precision Electroweak tests at Acute Rapidities (865469) |0 G:(EU-Grant)865469 |c 865469 |f ERC-2019-COG |x 1 |
542 | _ | _ | |i 2024-05-02 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-05-02 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de |
650 | _ | 7 | |a p p: scattering |2 INSPIRE |
650 | _ | 7 | |a p p: colliding beams |2 INSPIRE |
650 | _ | 7 | |a anti-p p: scattering |2 INSPIRE |
650 | _ | 7 | |a anti-p p: colliding beams |2 INSPIRE |
650 | _ | 7 | |a electron positron: annihilation |2 INSPIRE |
650 | _ | 7 | |a electron positron: colliding beams |2 INSPIRE |
650 | _ | 7 | |a parton: distribution function |2 INSPIRE |
650 | _ | 7 | |a W: mass: measured |2 INSPIRE |
650 | _ | 7 | |a rapidity dependence |2 INSPIRE |
650 | _ | 7 | |a CDF |2 INSPIRE |
650 | _ | 7 | |a DZERO |2 INSPIRE |
650 | _ | 7 | |a Batavia TEVATRON Coll |2 INSPIRE |
650 | _ | 7 | |a coherence |2 INSPIRE |
650 | _ | 7 | |a LHC-B |2 INSPIRE |
650 | _ | 7 | |a correlation |2 INSPIRE |
650 | _ | 7 | |a ATLAS |2 INSPIRE |
650 | _ | 7 | |a CMS |2 INSPIRE |
650 | _ | 7 | |a CERN LHC Coll |2 INSPIRE |
650 | _ | 7 | |a CERN LEP Stor |2 INSPIRE |
650 | _ | 7 | |a Drell-Yan process |2 INSPIRE |
650 | _ | 7 | |a data analysis method |2 INSPIRE |
650 | _ | 7 | |a experimental results |2 INSPIRE |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Andari, Nansi |b 1 |
700 | 1 | _ | |a Barter, William |b 2 |
700 | 1 | _ | |a Bendavid, Josh |b 3 |
700 | 1 | _ | |a Boonekamp, Maarten |b 4 |
700 | 1 | _ | |a Farry, Stephen |b 5 |
700 | 1 | _ | |a Gruenewald, Martin |b 6 |
700 | 1 | _ | |a Hays, Chris |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
700 | 1 | _ | |a Hunter, Ross |b 8 |
700 | 1 | _ | |a Kretzschmar, Jan |b 9 |
700 | 1 | _ | |a Lupton, Oliver |b 10 |
700 | 1 | _ | |a Pili, Martina |b 11 |
700 | 1 | _ | |a Ramos Pernas, Miguel |b 12 |
700 | 1 | _ | |a Tuchming, Boris |b 13 |
700 | 1 | _ | |a Vesterinen, Mika |b 14 |
700 | 1 | _ | |a Vicini, Alessandro |b 15 |
700 | 1 | _ | |a Wang, Chen |b 16 |
700 | 1 | _ | |a Xu, Menglin |b 17 |
700 | 1 | _ | |a LHC-TeV MW Collaboration |0 P:(DE-HGF)0 |b 18 |e Collaboration author |
773 | 1 | 8 | |a 10.1140/epjc/s10052-024-12532-z |b Springer Science and Business Media LLC |d 2024-05-02 |n 5 |p 451 |3 journal-article |2 Crossref |t The European Physical Journal C |v 84 |y 2024 |x 1434-6052 |
773 | _ | _ | |a 10.1140/epjc/s10052-024-12532-z |g Vol. 84, no. 5, p. 451 |0 PERI:(DE-600)1459069-4 |n 5 |p 451 |t The European physical journal / C |v 84 |y 2024 |x 1434-6052 |
787 | 0 | _ | |a Amoroso, Simone et.al. |d 2023 |i IsMemberOf |0 PUBDB-2023-05229 |r arXiv:2308.09417 ; DESY-23-124 |t Compatibility and combination of world W-boson mass measurements |
856 | 4 | _ | |u https://link.springer.com/article/10.1140/epjc/s10052-024-12532-z |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619914/files/s10052-024-12532-z.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619914/files/s10052-024-12532-z.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:619914 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1083702 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2023-10-21 |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR PHYS J C : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-27 |
920 | 1 | _ | |0 I:(DE-H253)CMS-20120731 |k CMS |l LHC/CMS Experiment |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CMS-20120731 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1126/science.abk1781 |9 -- missing cx lookup -- |1 T Aaltonen |p 170 - |2 Crossref |u T. Aaltonen et al., High-precision measurement of the W boson mass with the CDF II detector. Science 376(6589), 170–176 (2022). https://doi.org/10.1126/science.abk1781 |t Science |v 376 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.103.141801 |1 VM Abazov |9 -- missing cx lookup -- |2 Crossref |u V.M. Abazov et al., Measurement of the W boson mass. Phys. Rev. Lett. 103, 141801 (2009). https://doi.org/10.1103/PhysRevLett.103.141801. arXiv:0908.0766 |t Phys. Rev. Lett. |v 103 |y 2009 |
999 | C | 5 | |a 10.1103/PhysRevD.89.012005 |1 VM Abazov |9 -- missing cx lookup -- |2 Crossref |u V.M. Abazov et al., Measurement of the $$W$$ boson mass with the D0 detector. Phys. Rev. D 89(1), 012005 (2014). https://doi.org/10.1103/PhysRevD.89.012005. arXiv:1310.8628 |t Phys. Rev. D |v 89 |y 2014 |
999 | C | 5 | |a 10.1007/JHEP01(2022)036 |9 -- missing cx lookup -- |1 R Aaij |p 036 - |2 Crossref |u R. Aaij et al., Measurement of the W boson mass. JHEP 01, 036 (2022). https://doi.org/10.1007/JHEP01(2022)036. arXiv:2109.01113 |t JHEP |v 01 |y 2022 |
999 | C | 5 | |a 10.1140/epjc/s10052-017-5475-4 10.1140/epjc/s10052-018-6354-3 |9 -- missing cx lookup -- |2 Crossref |u M. Aaboud et al., Measurement of the $$W$$-boson mass in pp collisions at $$\sqrt{s}=7$$ TeV with the ATLAS detector. Eur. Phys. J. C 78(2), 110 (2018). . https://doi.org/10.1140/epjc/s10052-017-5475-4. https://doi.org/10.1140/epjc/s10052-018-6354-3. arXiv:1701.07240. [Erratum: Eur. Phys. J. C 78(11), 898(2018)] |
999 | C | 5 | |a 10.1103/PhysRevD.102.092012 |1 AM Sirunyan |9 -- missing cx lookup -- |2 Crossref |u A.M. Sirunyan et al., Measurements of the $$W$$ boson rapidity, helicity, double-differential cross sections, and charge asymmetry in $$pp$$ collisions at $$\sqrt{s}=13~{{\rm TeV}}$$. Phys. Rev. D 102, 092012 (2020). https://doi.org/10.1103/PhysRevD.102.092012 |t Phys. Rev. D |v 102 |y 2020 |
999 | C | 5 | |a 10.1016/j.physrep.2013.07.004 |9 -- missing cx lookup -- |1 S Schael |p 119 - |2 Crossref |u S. Schael et al., Electroweak measurements in electron–positron collisions at W-boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013). https://doi.org/10.1016/j.physrep.2013.07.004. arXiv:1302.3415 |t Phys. Rep. |v 532 |y 2013 |
999 | C | 5 | |a 10.1140/epjc/s10052-017-5199-5 |9 -- missing cx lookup -- |1 RD Ball |p 663 - |2 Crossref |u R.D. Ball et al., Parton distributions from high-precision collider data. Eur. Phys. J. C 77(10), 663 (2017). https://doi.org/10.1140/epjc/s10052-017-5199-5. arXiv:1706.00428 |t Eur. Phys. J. C |v 77 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevD.50.R4239 |9 -- missing cx lookup -- |1 GA Ladinsky |p R4239 - |2 Crossref |u G.A. Ladinsky, C.P. Yuan, The nonperturbative regime in QCD resummation for gauge boson production at hadron colliders. Phys. Rev. D 50, R4239 (1994). https://doi.org/10.1103/PhysRevD.50.R4239. arXiv:hep-ph/9311341 |t Phys. Rev. D |v 50 |y 1994 |
999 | C | 5 | |a 10.1088/1126-6708/2002/07/012 |9 -- missing cx lookup -- |1 J Pumplin |p 012 - |2 Crossref |u J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002). https://doi.org/10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195 |t JHEP |v 07 |y 2002 |
999 | C | 5 | |a 10.1016/j.nuclphysb.2009.02.014 |9 -- missing cx lookup -- |1 G Bozzi |p 174 - |2 Crossref |u G. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini, Transverse-momentum resummation: a perturbative study of Z production at the Tevatron. Nucl. Phys. B 815, 174–197 (2009). https://doi.org/10.1016/j.nuclphysb.2009.02.014. arXiv:0812.2862 |t Nucl. Phys. B |v 815 |y 2009 |
999 | C | 5 | |a 10.1016/j.physletb.2010.12.024 |9 -- missing cx lookup -- |1 G Bozzi |p 207 - |2 Crossref |u G. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini, Production of Drell–Yan lepton pairs in hadron collisions: transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy. Phys. Lett. B 696, 207–213 (2011). https://doi.org/10.1016/j.physletb.2010.12.024. arXiv:1007.2351 |t Phys. Lett. B |v 696 |y 2011 |
999 | C | 5 | |a 10.1088/1126-6708/2003/10/046 |9 -- missing cx lookup -- |1 D Stump |p 046 - |2 Crossref |u D. Stump, J. Huston, J. Pumplin, W.-K. Tung, H.L. Lai, S. Kuhlmann, J.F. Owens, Inclusive jet production, parton distributions, and the search for new physics. JHEP 10, 046 (2003). https://doi.org/10.1088/1126-6708/2003/10/046. arXiv:hep-ph/0303013 |t JHEP |v 10 |y 2003 |
999 | C | 5 | |a 10.1103/PhysRevD.78.013004 |1 PM Nadolsky |9 -- missing cx lookup -- |2 Crossref |u P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, C.P. Yuan, Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). https://doi.org/10.1103/PhysRevD.78.013004. arXiv:0802.0007 |t Phys. Rev. D |v 78 |y 2008 |
999 | C | 5 | |a 10.1088/1126-6708/2006/05/026 |9 -- missing cx lookup -- |1 T Sjöstrand |p 026 - |2 Crossref |u T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175 |t JHEP |v 05 |y 2006 |
999 | C | 5 | |a 10.1103/PhysRevD.56.5558 |9 -- missing cx lookup -- |1 C Balazs |p 5558 - |2 Crossref |u C. Balazs, C.P. Yuan, Soft gluon effects on lepton pairs at hadron colliders. Phys. Rev. D 56, 5558–5583 (1997). https://doi.org/10.1103/PhysRevD.56.5558. arXiv:hep-ph/9704258 |t Phys. Rev. D |v 56 |y 1997 |
999 | C | 5 | |a 10.1103/PhysRevD.67.073016 |1 F Landry |9 -- missing cx lookup -- |2 Crossref |u F. Landry, R. Brock, P.M. Nadolsky, C.P. Yuan, Tevatron Run-1 $$Z$$ boson data and Collins–Soper–Sterman resummation formalism. Phys. Rev. D 67, 073016 (2003). https://doi.org/10.1103/PhysRevD.67.073016. arXiv:hep-ph/0212159 |t Phys. Rev. D |v 67 |y 2003 |
999 | C | 5 | |a 10.1103/PhysRevD.82.074024 |1 H-L Lai |9 -- missing cx lookup -- |2 Crossref |u H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). https://doi.org/10.1103/PhysRevD.82.074024. arXiv:1007.2241 |t Phys. Rev. D |v 82 |y 2010 |
999 | C | 5 | |a 10.1016/j.cpc.2015.01.024 |9 -- missing cx lookup -- |1 T Sjöstrand |p 159 - |2 Crossref |u T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159 (2015). https://doi.org/10.1016/j.cpc.2015.01.024. arXiv:1410.3012 |t Comput. Phys. Commun. |v 191 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevLett.98.222002 |1 S Catani |9 -- missing cx lookup -- |2 Crossref |u S. Catani, M. Grazzini, Next-to-next-to-leading-order subtraction formalism in hadron collisions and its application to Higgs-boson production at the large hadron collider. Phys. Rev. Lett. 98, 222002 (2007). https://doi.org/10.1103/PhysRevLett.98.222002. arXiv:hep-ph/0703012 |t Phys. Rev. Lett. |v 98 |y 2007 |
999 | C | 5 | |a 10.1103/PhysRevLett.103.082001 |1 S Catani |9 -- missing cx lookup -- |2 Crossref |u S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys. Rev. Lett. 103, 082001 (2009). https://doi.org/10.1103/PhysRevLett.103.082001. arXiv:0903.2120 |t Phys. Rev. Lett. |v 103 |y 2009 |
999 | C | 5 | |a 10.1140/epjc/s10052-021-09057-0 |9 -- missing cx lookup -- |1 S Bailey |p 341 - |2 Crossref |u S. Bailey, T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne, Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C 81(4), 341 (2021). https://doi.org/10.1140/epjc/s10052-021-09057-0. arXiv:2012.04684 |t Eur. Phys. J. C |v 81 |y 2021 |
999 | C | 5 | |2 Crossref |u T.-J. Hou et al., Progress in the CTEQ-TEA NNLO global QCD analysis (2019). arXiv:1908.11394 |
999 | C | 5 | |a 10.1088/1126-6708/2004/11/040 |9 -- missing cx lookup -- |1 P Nason |p 040 - |2 Crossref |u P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). https://doi.org/10.1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146 |t JHEP |v 11 |y 2004 |
999 | C | 5 | |a 10.1088/1126-6708/2007/11/070 |9 -- missing cx lookup -- |1 S Frixione |p 070 - |2 Crossref |u S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP 11, 070 (2007). https://doi.org/10.1088/1126-6708/2007/11/070. arXiv:0709.2092 |t JHEP |v 11 |y 2007 |
999 | C | 5 | |a 10.1007/JHEP06(2010)043 |9 -- missing cx lookup -- |1 S Alioli |p 043 - |2 Crossref |u S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). https://doi.org/10.1007/JHEP06(2010)043. arXiv:1002.2581 |t JHEP |v 06 |y 2010 |
999 | C | 5 | |a 10.1140/epjc/s10052-020-7757-5 |9 -- missing cx lookup -- |2 Crossref |u S. Camarda et al., DYTurbo: fast predictions for Drell–Yan processes. Eur. Phys. J. C 80(3), 251 (2020). https://doi.org/10.1140/epjc/s10052-020-7757-5. arXiv:1910.07049. [Erratum: Eur. Phys. J. C 80, 440 (2020)] |
999 | C | 5 | |a 10.1016/S0168-9002(03)00329-2 |9 -- missing cx lookup -- |1 A Valassi |p 391 - |2 Crossref |u A. Valassi, Combining correlated measurements of several different physical quantities. Nucl. Instrum. Methods A 500, 391–405 (2003). https://doi.org/10.1016/S0168-9002(03)00329-2 |t Nucl. Instrum. Methods A |v 500 |y 2003 |
999 | C | 5 | |a 10.1140/epjc/s10052-022-10328-7 |9 -- missing cx lookup -- |1 RD Ball |p 428 - |2 Crossref |u R.D. Ball et al., The path to proton structure at 1% accuracy. Eur. Phys. J. C 82(5), 428 (2022). https://doi.org/10.1140/epjc/s10052-022-10328-7. arXiv:2109.02653 |t Eur. Phys. J. C |v 82 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevD.96.014011 |1 S Alekhin |9 -- missing cx lookup -- |2 Crossref |u S. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Parton distribution functions, $$\alpha _s$$, and heavy-quark masses for LHC Run II. Phys. Rev. D 96(1), 014011 (2017). https://doi.org/10.1103/PhysRevD.96.014011. arXiv:1701.05838 |t Phys. Rev. D |v 96 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevD.93.033006 |1 S Dulat |9 -- missing cx lookup -- |2 Crossref |u S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D 93(3), 033006 (2016). https://doi.org/10.1103/PhysRevD.93.033006. arXiv:1506.07443 |t Phys. Rev. D |v 93 |y 2016 |
999 | C | 5 | |a 10.1140/epjc/s10052-015-3397-6 |9 -- missing cx lookup -- |1 LA Harland-Lang |p 204 - |2 Crossref |u L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75(5), 204 (2015). https://doi.org/10.1140/epjc/s10052-015-3397-6. arXiv:1412.3989 |t Eur. Phys. J. C |v 75 |y 2015 |
999 | C | 5 | |a 10.1007/JHEP05(2020)143 |9 -- missing cx lookup -- |2 Crossref |u P.F. Monni, P. Nason, E. Re, M. Wiesemann, G. Zanderighi, MiNNLO$$_{PS}$$: a new method to match NNLO QCD to parton showers. JHEP 05, 143 (2020). https://doi.org/10.1007/JHEP05(2020)143. arXiv:1908.06987. [Erratum: JHEP 02, 031 (2022)] |
999 | C | 5 | |a 10.1140/epjc/s10052-020-08658-5 |9 -- missing cx lookup -- |1 PF Monni |p 1075 - |2 Crossref |u P.F. Monni, E. Re, M. Wiesemann, MiNNLO$$_{{\rm PS}}$$: optimizing $$2\rightarrow 1$$ hadronic processes. Eur. Phys. J. C 80(11), 1075 (2020). https://doi.org/10.1140/epjc/s10052-020-08658-5. arXiv:2006.04133 |t Eur. Phys. J. C |v 80 |y 2020 |
999 | C | 5 | |a 10.1016/j.cpc.2006.11.010 |9 -- missing cx lookup -- |1 J Alwall |p 300 - |2 Crossref |u J. Alwall et al., A standard format for Les Houches event files. Comput. Phys. Commun. 176(4), 300–304 (2007). https://doi.org/10.1016/j.cpc.2006.11.010 |t Comput. Phys. Commun. |v 176 |y 2007 |
999 | C | 5 | |a 10.1007/JHEP04(2012)037 |9 -- missing cx lookup -- |1 L Barze |p 037 - |2 Crossref |u L. Barze, G. Montagna, P. Nason, O. Nicrosini, F. Piccinini, Implementation of electroweak corrections in the POWHEG BOX: single W production. JHEP 04, 037 (2012). https://doi.org/10.1007/JHEP04(2012)037. arXiv:1202.0465 |t JHEP |v 04 |y 2012 |
999 | C | 5 | |a 10.1088/1126-6708/2008/07/060 |9 -- missing cx lookup -- |1 S Alioli |p 060 - |2 Crossref |u S. Alioli, P. Nason, C. Oleari, E. Re, NLO vector-boson production matched with shower in POWHEG. JHEP 07, 060 (2008). https://doi.org/10.1088/1126-6708/2008/07/060. arXiv:0805.4802 |t JHEP |v 07 |y 2008 |
999 | C | 5 | |2 Crossref |u J. Isaacson, Y. Fu, C.P. Yuan, ResBos2 and the CDF W mass measurement (2022). arXiv:2205.02788 |
999 | C | 5 | |a 10.1140/epjc/s10052-017-4832-7 |9 -- missing cx lookup -- |1 S Alioli |p 280 - |2 Crossref |u S. Alioli et al., Precision studies of observables in $$p p \rightarrow W \rightarrow l\nu _l$$ and $$pp \rightarrow \gamma , Z \rightarrow l^+ l^-$$ processes at the LHC. Eur. Phys. J. C 77(5), 280 (2017). https://doi.org/10.1140/epjc/s10052-017-4832-7. arXiv:1606.02330 |t Eur. Phys. J. C |v 77 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevD.89.072003 |1 TA Aaltonen |9 -- missing cx lookup -- |2 Crossref |u T.A. Aaltonen et al., Precise measurement of the W -boson mass with the Collider Detector at Fermilab. Phys. Rev. D 89(7), 072003 (2014). https://doi.org/10.1103/PhysRevD.89.072003. arXiv:1311.0894 |t Phys. Rev. D |v 89 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevD.103.012003 |9 -- missing cx lookup -- |2 Crossref |u V.M. Abazov et al., Study of the normalized transverse momentum distribution of $$W$$ bosons produced in $$p \bar{p}$$ collisions at $$\sqrt{s} = 1.96$$ TeV. Phys. Rev. D 103(1), 012003 (2021). https://doi.org/10.1103/PhysRevD.103.012003. arXiv:2007.13504 |
999 | C | 5 | |a 10.1140/epjc/s10052-014-3071-4 |9 -- missing cx lookup -- |2 Crossref |u ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C 74, 3071 (2014). https://doi.org/10.1140/epjc/s10052-014-3071-4. arXiv:1407.5063 |
999 | C | 5 | |a 10.1140/epjc/s10052-014-3130-x |9 -- missing cx lookup -- |2 Crossref |u ATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data. Eur. Phys. J. C 74, 3130 (2014). https://doi.org/10.1140/epjc/s10052-014-3130-x. arXiv:1407.3935 |
999 | C | 5 | |a 10.22323/1.297.0203 |9 -- missing cx lookup -- |2 Crossref |u V. Bertone et al., xFitter 2.0.0: an open source QCD fit framework. PoS DIS2017, 203 (2018). https://doi.org/10.22323/1.297.0203. arXiv:1709.01151 |
999 | C | 5 | |a 10.1140/epjc/s10052-010-1255-0 |9 -- missing cx lookup -- |1 T Carli |p 503 - |2 Crossref |u T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G.P. Salam, F. Siegert, P. Starovoitov, M. Sutton, A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID project. Eur. Phys. J. C 66, 503–524 (2010). https://doi.org/10.1140/epjc/s10052-010-1255-0. arXiv:0911.2985 |t Eur. Phys. J. C |v 66 |y 2010 |
999 | C | 5 | |a 10.1103/PhysRevD.60.113006 |1 JM Campbell |9 -- missing cx lookup -- |2 Crossref |u J.M. Campbell, R.K. Ellis, Update on vector boson pair production at hadron colliders. Phys. Rev. D 60, 113006 (1999). https://doi.org/10.1103/PhysRevD.60.113006. arXiv:hep-ph/9905386 |t Phys. Rev. D |v 60 |y 1999 |
999 | C | 5 | |2 Crossref |u S. Alekhin et al., HERAFitter, open source QCD fit project (2015). arXiv:1410.4412 |
999 | C | 5 | |a 10.1103/PhysRevLett.102.181801 |9 -- missing cx lookup -- |2 Crossref |u T. Aaltonen et al., Direct measurement of the $$W$$ production charge asymmetry in $$p\bar{p}$$ collisions at $$\sqrt{s} = 1.96$$ TeV. Phys. Rev. Lett. 102, 181801 (2009). https://doi.org/10.1103/PhysRevLett.102.181801. arXiv:0901.2169 |
999 | C | 5 | |a 10.1016/j.physletb.2010.06.043 |9 -- missing cx lookup -- |2 Crossref |u T.A. Aaltonen et al., Measurement of $$d\sigma /dy$$ of Drell–Yan $$e^+e^-$$ pairs in the $$Z$$ mass region from $$p\bar{p}$$ collisions at $$\sqrt{s}=1.96$$ TeV. Phys. Lett. B 692, 232–239 (2010). https://doi.org/10.1016/j.physletb.2010.06.043. arXiv:0908.3914 |
999 | C | 5 | |a 10.1103/PhysRevD.76.012003 |9 -- missing cx lookup -- |2 Crossref |u V.M. Abazov et al., Measurement of the shape of the boson rapidity distribution for $$p \bar{p} \rightarrow Z / \gamma ^* \rightarrow e^{+} e^{-} + X$$ events produced at $$\sqrt{s}$$ of 1.96-TeV. Phys. Rev. D 76, 012003 (2007). https://doi.org/10.1103/PhysRevD.76.012003. arXiv:hep-ex/0702025 |
999 | C | 5 | |a 10.1103/PhysRevD.88.091102 |9 -- missing cx lookup -- |2 Crossref |u V.M. Abazov et al., Measurement of the muon charge asymmetry in $$p\bar{p}$$$$\rightarrow $$ W+X $$\rightarrow $$$$\mu \nu $$ + X Events at $$\sqrt{s}=1.96$$ TeV. Phys. Rev. D 88, 091102 (2013). https://doi.org/10.1103/PhysRevD.88.091102. arXiv:1309.2591 |
999 | C | 5 | |a 10.1103/PhysRevD.91.032007 |9 -- missing cx lookup -- |2 Crossref |u V.M. Abazov et al., Measurement of the electron charge asymmetry in $${p\bar{p}\rightarrow W+X \rightarrow e\nu +X}$$ decays in $${p\bar{p}}$$ collisions at $${\sqrt{s}=1.96}$$ TeV. Phys. Rev. D 91(3), 032007 (2015). https://doi.org/10.1103/PhysRevD.91.032007. arXiv:1412.2862. [Erratum: Phys. Rev. D 91, 079901 (2015)] |
999 | C | 5 | |a 10.1140/epjc/s10052-017-4911-9 |9 -- missing cx lookup -- |2 Crossref |u M. Aaboud et al., Precision measurement and interpretation of inclusive $$W^+$$, $$W^-$$ and $$Z/\gamma ^*$$ production cross sections with the ATLAS detector. Eur. Phys. J. C 77(6), 367 (2017). https://doi.org/10.1140/epjc/s10052-017-4911-9. arXiv:1612.03016 |
999 | C | 5 | |a 10.1103/PhysRevD.16.2219 |9 -- missing cx lookup -- |1 JC Collins |p 2219 - |2 Crossref |u J.C. Collins, D.E. Soper, Angular distribution of dileptons in high-energy hadron collisions. Phys. Rev. D 16, 2219 (1977). https://doi.org/10.1103/PhysRevD.16.2219 |t Phys. Rev. D |v 16 |y 1977 |
999 | C | 5 | |a 10.1007/JHEP08(2016)159 |9 -- missing cx lookup -- |2 Crossref |u ATLAS Collaboration, Measurement of the angular coefficients in $$Z$$-boson events using electron and muon pairs from data taken at $$\sqrt{s} = 8\,{{\rm TeV}}$$ with the ATLAS detector. JHEP 08, 159 (2016). https://doi.org/10.1007/JHEP08(2016)159. arXiv:1606.00689 |
999 | C | 5 | |a 10.1103/PhysRevD.96.093005 |1 CM Carloni Calame |9 -- missing cx lookup -- |2 Crossref |u C.M. Carloni Calame, M. Chiesa, H. Martinez, G. Montagna, O. Nicrosini, F. Piccinini, A. Vicini, Precision measurement of the $$W$$-boson mass: theoretical contributions and uncertainties. Phys. Rev. D 96, 093005 (2017). https://doi.org/10.1103/PhysRevD.96.093005 |t Phys. Rev. D |v 96 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevD.59.013002 |1 U Baur |9 -- missing cx lookup -- |2 Crossref |u U. Baur, S. Keller, D. Wackeroth, Electroweak radiative corrections to $$W$$ boson production in hadronic collisions. Phys. Rev. D 59, 013002 (1999). https://doi.org/10.1103/PhysRevD.59.013002. arXiv:hep-ph/9807417 |t Phys. Rev. D |v 59 |y 1999 |
999 | C | 5 | |a 10.1103/PhysRevD.70.073015 |1 U Baur |9 -- missing cx lookup -- |2 Crossref |u U. Baur, D. Wackeroth, Electroweak radiative corrections to $$p \bar{p} \rightarrow W^\pm \rightarrow \ell ^\pm \nu $$ beyond the pole approximation. Phys. Rev. D 70, 073015 (2004). https://doi.org/10.1103/PhysRevD.70.073015. arXiv:hep-ph/0405191 |t Phys. Rev. D |v 70 |y 2004 |
999 | C | 5 | |a 10.1140/epjc/s2003-01223-4 |9 -- missing cx lookup -- |1 W Placzek |p 325 - |2 Crossref |u W. Placzek, S. Jadach, Multiphoton radiation in leptonic W boson decays. Eur. Phys. J. C 29, 325–339 (2003). https://doi.org/10.1140/epjc/s2003-01223-4. arXiv:hep-ph/0302065 |t Eur. Phys. J. C |v 29 |y 2003 |
999 | C | 5 | |a 10.22323/1.084.0340 |9 -- missing cx lookup -- |2 Crossref |u W. Placzek, WINHAC: the Monte Carlo event generator for single W-boson production in hadronic collisions. PoS EPS-HEP2009, 340 (2009). https://doi.org/10.22323/1.084.0340. arXiv:0911.0572 |
999 | C | 5 | |a 10.5506/APhysPolB.44.2171 |9 -- missing cx lookup -- |1 W Płaczek |p 2171 - |2 Crossref |u W. Płaczek, S. Jadach, M.W. Krasny, Drell–Yan processes with WINHAC. Acta Phys. Pol. B 44(11), 2171–2178 (2013). https://doi.org/10.5506/APhysPolB.44.2171. arXiv:1310.5994 |t Acta Phys. Pol. B |v 44 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevD.69.037301 |9 -- missing cx lookup -- |2 Crossref |u C.M. Carloni Calame, G. Montagna, O. Nicrosini, M. Treccani, Higher order QED corrections to W boson mass determination at hadron colliders. Phys. Rev. D 69, 037301 (2004). https://doi.org/10.1103/PhysRevD.69.037301. arXiv:hep-ph/0303102 |
999 | C | 5 | |a 10.1088/1126-6708/2006/12/016 |9 -- missing cx lookup -- |2 Crossref |u C.M. Carloni Calame, G. Montagna, O. Nicrosini, A. Vicini, Precision electroweak calculation of the charged current Drell–Yan process. JHEP 12, 016 (2006). https://doi.org/10.1088/1126-6708/2006/12/016. arXiv:hep-ph/0609170 |
999 | C | 5 | |a 10.1088/1126-6708/2007/10/109 |9 -- missing cx lookup -- |2 Crossref |u C.M. Carloni Calame, G. Montagna, O. Nicrosini, A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders. JHEP 10, 109 (2007). https://doi.org/10.1088/1126-6708/2007/10/109. arXiv:0710.1722 |
999 | C | 5 | |a 10.1103/PhysRevD.103.113002 |1 A Behring |9 -- missing cx lookup -- |2 Crossref |u A. Behring, F. Buccioni, F. Caola, M. Delto, M. Jaquier, K. Melnikov, R. Röntsch, Estimating the impact of mixed QCD-electroweak corrections on the $$w$$-mass determination at the LHC. Phys. Rev. D 103, 113002 (2021). https://doi.org/10.1103/PhysRevD.103.113002 |t Phys. Rev. D |v 103 |y 2021 |
999 | C | 5 | |a 10.1140/epjc/s10052-015-3810-1 |9 -- missing cx lookup -- |1 G Bozzi |p 601 - |2 Crossref |u G. Bozzi, L. Citelli, M. Vesterinen, A. Vicini, Prospects for improving the LHC W boson mass measurement with forward muons. Eur. Phys. J. C 75(12), 601 (2015). https://doi.org/10.1140/epjc/s10052-015-3810-1. arXiv:1508.06954 |t Eur. Phys. J. C |v 75 |y 2015 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|