000619914 001__ 619914
000619914 005__ 20250723173133.0
000619914 0247_ $$2doi$$a10.1140/epjc/s10052-024-12532-z
000619914 0247_ $$2INSPIRETeX$$aLHC-TeVMWWorkingGroup:2023zkn
000619914 0247_ $$2inspire$$ainspire:2689656
000619914 0247_ $$2ISSN$$a1434-6044
000619914 0247_ $$2ISSN$$a1434-6052
000619914 0247_ $$2arXiv$$aarXiv:2308.09417
000619914 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-08015
000619914 0247_ $$2altmetric$$aaltmetric:163307865
000619914 0247_ $$2pmid$$apmid:39512385
000619914 0247_ $$2WOS$$aWOS:001225939600003
000619914 0247_ $$2openalex$$aopenalex:W4396596568
000619914 037__ $$aPUBDB-2024-08015
000619914 041__ $$aEnglish
000619914 082__ $$a530
000619914 088__ $$2arXiv$$aarXiv:2308.09417
000619914 088__ $$2DESY$$aDESY-23-124
000619914 1001_ $$0P:(DE-H253)PIP1083702$$aAmoroso, Simone$$b0
000619914 245__ $$aCompatibility and combination of world W-boson mass measurements
000619914 260__ $$aHeidelberg$$bSpringer$$c2024
000619914 3367_ $$2DRIVER$$aarticle
000619914 3367_ $$2DataCite$$aOutput Types/Journal article
000619914 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734703591_2248424
000619914 3367_ $$2BibTeX$$aARTICLE
000619914 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000619914 3367_ $$00$$2EndNote$$aJournal Article
000619914 500__ $$aSubmitted to EPJC
000619914 520__ $$aThe compatibility of W-boson mass measurements performed by the ATLAS, LHCb, CDF, and D0 experiments is studied using a coherent framework with theory uncertainty correlations. The measurements are combined using a number of recent sets of parton distribution functions (PDF), and are further combined with the average value of measurements from the Large Electron–Positron collider. The considered PDF sets generally have a low compatibility with a suite of global rapidity-sensitive Drell–Yan measurements. The most compatible set is CT18 due to its larger uncertainties. A combination of all $m_W$ measurements yields a value of $m_W = 80{}394.6 \pm 11.5$ MeV with the CT18 set, but has a probability of compatibility of 0.5% and is therefore disfavoured. Combinations are performed removing each measurement individually, and a 91% probability of compatibility is obtained when the CDF measurement is removed. The corresponding value of the W boson mass is $80{}369.2 \pm 13.3$ MeV, which differs by $3.6\sigma $ from the CDF value determined using the same PDF set.
000619914 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000619914 536__ $$0G:(EU-Grant)865469$$aSPEAR - Standard model Precision Electroweak tests at Acute Rapidities (865469)$$c865469$$fERC-2019-COG$$x1
000619914 542__ $$2Crossref$$i2024-05-02$$uhttps://creativecommons.org/licenses/by/4.0
000619914 542__ $$2Crossref$$i2024-05-02$$uhttps://creativecommons.org/licenses/by/4.0
000619914 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000619914 650_7 $$2INSPIRE$$ap p: scattering
000619914 650_7 $$2INSPIRE$$ap p: colliding beams
000619914 650_7 $$2INSPIRE$$aanti-p p: scattering
000619914 650_7 $$2INSPIRE$$aanti-p p: colliding beams
000619914 650_7 $$2INSPIRE$$aelectron positron: annihilation
000619914 650_7 $$2INSPIRE$$aelectron positron: colliding beams
000619914 650_7 $$2INSPIRE$$aparton: distribution function
000619914 650_7 $$2INSPIRE$$aW: mass: measured
000619914 650_7 $$2INSPIRE$$arapidity dependence
000619914 650_7 $$2INSPIRE$$aCDF
000619914 650_7 $$2INSPIRE$$aDZERO
000619914 650_7 $$2INSPIRE$$aBatavia TEVATRON Coll
000619914 650_7 $$2INSPIRE$$acoherence
000619914 650_7 $$2INSPIRE$$aLHC-B
000619914 650_7 $$2INSPIRE$$acorrelation
000619914 650_7 $$2INSPIRE$$aATLAS
000619914 650_7 $$2INSPIRE$$aCMS
000619914 650_7 $$2INSPIRE$$aCERN LHC Coll
000619914 650_7 $$2INSPIRE$$aCERN LEP Stor
000619914 650_7 $$2INSPIRE$$aDrell-Yan process
000619914 650_7 $$2INSPIRE$$adata analysis method
000619914 650_7 $$2INSPIRE$$aexperimental results
000619914 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000619914 7001_ $$aAndari, Nansi$$b1
000619914 7001_ $$aBarter, William$$b2
000619914 7001_ $$aBendavid, Josh$$b3
000619914 7001_ $$aBoonekamp, Maarten$$b4
000619914 7001_ $$aFarry, Stephen$$b5
000619914 7001_ $$aGruenewald, Martin$$b6
000619914 7001_ $$0P:(DE-HGF)0$$aHays, Chris$$b7$$eCorresponding author
000619914 7001_ $$aHunter, Ross$$b8
000619914 7001_ $$aKretzschmar, Jan$$b9
000619914 7001_ $$aLupton, Oliver$$b10
000619914 7001_ $$aPili, Martina$$b11
000619914 7001_ $$aRamos Pernas, Miguel$$b12
000619914 7001_ $$aTuchming, Boris$$b13
000619914 7001_ $$aVesterinen, Mika$$b14
000619914 7001_ $$aVicini, Alessandro$$b15
000619914 7001_ $$aWang, Chen$$b16
000619914 7001_ $$aXu, Menglin$$b17
000619914 7001_ $$0P:(DE-HGF)0$$aLHC-TeV MW Collaboration$$b18$$eCollaboration author
000619914 77318 $$2Crossref$$3journal-article$$a10.1140/epjc/s10052-024-12532-z$$bSpringer Science and Business Media LLC$$d2024-05-02$$n5$$p451$$tThe European Physical Journal C$$v84$$x1434-6052$$y2024
000619914 773__ $$0PERI:(DE-600)1459069-4$$a10.1140/epjc/s10052-024-12532-z$$gVol. 84, no. 5, p. 451$$n5$$p451$$tThe European physical journal / C$$v84$$x1434-6052$$y2024
000619914 7870_ $$0PUBDB-2023-05229$$aAmoroso, Simone et.al.$$d2023$$iIsMemberOf$$rarXiv:2308.09417 ; DESY-23-124$$tCompatibility and combination of world W-boson mass measurements
000619914 8564_ $$uhttps://link.springer.com/article/10.1140/epjc/s10052-024-12532-z
000619914 8564_ $$uhttps://bib-pubdb1.desy.de/record/619914/files/s10052-024-12532-z.pdf$$yOpenAccess
000619914 8564_ $$uhttps://bib-pubdb1.desy.de/record/619914/files/s10052-024-12532-z.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000619914 909CO $$ooai:bib-pubdb1.desy.de:619914$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000619914 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083702$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000619914 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000619914 9141_ $$y2024
000619914 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000619914 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000619914 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:14Z
000619914 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:14Z
000619914 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000619914 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000619914 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-10-21
000619914 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000619914 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
000619914 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
000619914 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:14Z
000619914 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
000619914 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
000619914 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
000619914 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J C : 2022$$d2024-12-27
000619914 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-27
000619914 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-27
000619914 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
000619914 9201_ $$0I:(DE-H253)CMS-20120731$$kCMS$$lLHC/CMS Experiment$$x0
000619914 980__ $$ajournal
000619914 980__ $$aVDB
000619914 980__ $$aUNRESTRICTED
000619914 980__ $$aI:(DE-H253)CMS-20120731
000619914 9801_ $$aFullTexts
000619914 999C5 $$1T Aaltonen$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abk1781$$p170 -$$tScience$$uT. Aaltonen et al., High-precision measurement of the W boson mass with the CDF II detector. Science 376(6589), 170–176 (2022). https://doi.org/10.1126/science.abk1781$$v376$$y2022
000619914 999C5 $$1VM Abazov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.141801$$tPhys. Rev. Lett.$$uV.M. Abazov et al., Measurement of the W boson mass. Phys. Rev. Lett. 103, 141801 (2009). https://doi.org/10.1103/PhysRevLett.103.141801. arXiv:0908.0766$$v103$$y2009
000619914 999C5 $$1VM Abazov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.89.012005$$tPhys. Rev. D$$uV.M. Abazov et al., Measurement of the $$W$$ boson mass with the D0 detector. Phys. Rev. D 89(1), 012005 (2014). https://doi.org/10.1103/PhysRevD.89.012005. arXiv:1310.8628$$v89$$y2014
000619914 999C5 $$1R Aaij$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2022)036$$p036 -$$tJHEP$$uR. Aaij et al., Measurement of the W boson mass. JHEP 01, 036 (2022). https://doi.org/10.1007/JHEP01(2022)036. arXiv:2109.01113$$v01$$y2022
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-5475-4 10.1140/epjc/s10052-018-6354-3$$uM. Aaboud et al., Measurement of the $$W$$-boson mass in pp collisions at $$\sqrt{s}=7$$ TeV with the ATLAS detector. Eur. Phys. J. C 78(2), 110 (2018). . https://doi.org/10.1140/epjc/s10052-017-5475-4. https://doi.org/10.1140/epjc/s10052-018-6354-3. arXiv:1701.07240. [Erratum: Eur. Phys. J. C 78(11), 898(2018)]
000619914 999C5 $$1AM Sirunyan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.092012$$tPhys. Rev. D$$uA.M. Sirunyan et al., Measurements of the $$W$$ boson rapidity, helicity, double-differential cross sections, and charge asymmetry in $$pp$$ collisions at $$\sqrt{s}=13~{{\rm TeV}}$$. Phys. Rev. D 102, 092012 (2020). https://doi.org/10.1103/PhysRevD.102.092012$$v102$$y2020
000619914 999C5 $$1S Schael$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2013.07.004$$p119 -$$tPhys. Rep.$$uS. Schael et al., Electroweak measurements in electron–positron collisions at W-boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013). https://doi.org/10.1016/j.physrep.2013.07.004. arXiv:1302.3415$$v532$$y2013
000619914 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-5199-5$$p663 -$$tEur. Phys. J. C$$uR.D. Ball et al., Parton distributions from high-precision collider data. Eur. Phys. J. C 77(10), 663 (2017). https://doi.org/10.1140/epjc/s10052-017-5199-5. arXiv:1706.00428$$v77$$y2017
000619914 999C5 $$1GA Ladinsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.50.R4239$$pR4239 -$$tPhys. Rev. D$$uG.A. Ladinsky, C.P. Yuan, The nonperturbative regime in QCD resummation for gauge boson production at hadron colliders. Phys. Rev. D 50, R4239 (1994). https://doi.org/10.1103/PhysRevD.50.R4239. arXiv:hep-ph/9311341$$v50$$y1994
000619914 999C5 $$1J Pumplin$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2002/07/012$$p012 -$$tJHEP$$uJ. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002). https://doi.org/10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195$$v07$$y2002
000619914 999C5 $$1G Bozzi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2009.02.014$$p174 -$$tNucl. Phys. B$$uG. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini, Transverse-momentum resummation: a perturbative study of Z production at the Tevatron. Nucl. Phys. B 815, 174–197 (2009). https://doi.org/10.1016/j.nuclphysb.2009.02.014. arXiv:0812.2862$$v815$$y2009
000619914 999C5 $$1G Bozzi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.12.024$$p207 -$$tPhys. Lett. B$$uG. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini, Production of Drell–Yan lepton pairs in hadron collisions: transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy. Phys. Lett. B 696, 207–213 (2011). https://doi.org/10.1016/j.physletb.2010.12.024. arXiv:1007.2351$$v696$$y2011
000619914 999C5 $$1D Stump$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2003/10/046$$p046 -$$tJHEP$$uD. Stump, J. Huston, J. Pumplin, W.-K. Tung, H.L. Lai, S. Kuhlmann, J.F. Owens, Inclusive jet production, parton distributions, and the search for new physics. JHEP 10, 046 (2003). https://doi.org/10.1088/1126-6708/2003/10/046. arXiv:hep-ph/0303013$$v10$$y2003
000619914 999C5 $$1PM Nadolsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.78.013004$$tPhys. Rev. D$$uP.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, C.P. Yuan, Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). https://doi.org/10.1103/PhysRevD.78.013004. arXiv:0802.0007$$v78$$y2008
000619914 999C5 $$1T Sjöstrand$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2006/05/026$$p026 -$$tJHEP$$uT. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175$$v05$$y2006
000619914 999C5 $$1C Balazs$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.56.5558$$p5558 -$$tPhys. Rev. D$$uC. Balazs, C.P. Yuan, Soft gluon effects on lepton pairs at hadron colliders. Phys. Rev. D 56, 5558–5583 (1997). https://doi.org/10.1103/PhysRevD.56.5558. arXiv:hep-ph/9704258$$v56$$y1997
000619914 999C5 $$1F Landry$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.67.073016$$tPhys. Rev. D$$uF. Landry, R. Brock, P.M. Nadolsky, C.P. Yuan, Tevatron Run-1 $$Z$$ boson data and Collins–Soper–Sterman resummation formalism. Phys. Rev. D 67, 073016 (2003). https://doi.org/10.1103/PhysRevD.67.073016. arXiv:hep-ph/0212159$$v67$$y2003
000619914 999C5 $$1H-L Lai$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.82.074024$$tPhys. Rev. D$$uH.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). https://doi.org/10.1103/PhysRevD.82.074024. arXiv:1007.2241$$v82$$y2010
000619914 999C5 $$1T Sjöstrand$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2015.01.024$$p159 -$$tComput. Phys. Commun.$$uT. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159 (2015). https://doi.org/10.1016/j.cpc.2015.01.024. arXiv:1410.3012$$v191$$y2015
000619914 999C5 $$1S Catani$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.222002$$tPhys. Rev. Lett.$$uS. Catani, M. Grazzini, Next-to-next-to-leading-order subtraction formalism in hadron collisions and its application to Higgs-boson production at the large hadron collider. Phys. Rev. Lett. 98, 222002 (2007). https://doi.org/10.1103/PhysRevLett.98.222002. arXiv:hep-ph/0703012$$v98$$y2007
000619914 999C5 $$1S Catani$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.082001$$tPhys. Rev. Lett.$$uS. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys. Rev. Lett. 103, 082001 (2009). https://doi.org/10.1103/PhysRevLett.103.082001. arXiv:0903.2120$$v103$$y2009
000619914 999C5 $$1S Bailey$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-021-09057-0$$p341 -$$tEur. Phys. J. C$$uS. Bailey, T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne, Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C 81(4), 341 (2021). https://doi.org/10.1140/epjc/s10052-021-09057-0. arXiv:2012.04684$$v81$$y2021
000619914 999C5 $$2Crossref$$uT.-J. Hou et al., Progress in the CTEQ-TEA NNLO global QCD analysis (2019). arXiv:1908.11394
000619914 999C5 $$1P Nason$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2004/11/040$$p040 -$$tJHEP$$uP. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). https://doi.org/10.1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146$$v11$$y2004
000619914 999C5 $$1S Frixione$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/11/070$$p070 -$$tJHEP$$uS. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP 11, 070 (2007). https://doi.org/10.1088/1126-6708/2007/11/070. arXiv:0709.2092$$v11$$y2007
000619914 999C5 $$1S Alioli$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2010)043$$p043 -$$tJHEP$$uS. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). https://doi.org/10.1007/JHEP06(2010)043. arXiv:1002.2581$$v06$$y2010
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-020-7757-5$$uS. Camarda et al., DYTurbo: fast predictions for Drell–Yan processes. Eur. Phys. J. C 80(3), 251 (2020). https://doi.org/10.1140/epjc/s10052-020-7757-5. arXiv:1910.07049. [Erratum: Eur. Phys. J. C 80, 440 (2020)]
000619914 999C5 $$1A Valassi$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(03)00329-2$$p391 -$$tNucl. Instrum. Methods A$$uA. Valassi, Combining correlated measurements of several different physical quantities. Nucl. Instrum. Methods A 500, 391–405 (2003). https://doi.org/10.1016/S0168-9002(03)00329-2$$v500$$y2003
000619914 999C5 $$1RD Ball$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10328-7$$p428 -$$tEur. Phys. J. C$$uR.D. Ball et al., The path to proton structure at 1% accuracy. Eur. Phys. J. C 82(5), 428 (2022). https://doi.org/10.1140/epjc/s10052-022-10328-7. arXiv:2109.02653$$v82$$y2022
000619914 999C5 $$1S Alekhin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.014011$$tPhys. Rev. D$$uS. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Parton distribution functions, $$\alpha _s$$, and heavy-quark masses for LHC Run II. Phys. Rev. D 96(1), 014011 (2017). https://doi.org/10.1103/PhysRevD.96.014011. arXiv:1701.05838$$v96$$y2017
000619914 999C5 $$1S Dulat$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.033006$$tPhys. Rev. D$$uS. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D 93(3), 033006 (2016). https://doi.org/10.1103/PhysRevD.93.033006. arXiv:1506.07443$$v93$$y2016
000619914 999C5 $$1LA Harland-Lang$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3397-6$$p204 -$$tEur. Phys. J. C$$uL.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75(5), 204 (2015). https://doi.org/10.1140/epjc/s10052-015-3397-6. arXiv:1412.3989$$v75$$y2015
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2020)143$$uP.F. Monni, P. Nason, E. Re, M. Wiesemann, G. Zanderighi, MiNNLO$$_{PS}$$: a new method to match NNLO QCD to parton showers. JHEP 05, 143 (2020). https://doi.org/10.1007/JHEP05(2020)143. arXiv:1908.06987. [Erratum: JHEP 02, 031 (2022)]
000619914 999C5 $$1PF Monni$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-020-08658-5$$p1075 -$$tEur. Phys. J. C$$uP.F. Monni, E. Re, M. Wiesemann, MiNNLO$$_{{\rm PS}}$$: optimizing $$2\rightarrow 1$$ hadronic processes. Eur. Phys. J. C 80(11), 1075 (2020). https://doi.org/10.1140/epjc/s10052-020-08658-5. arXiv:2006.04133$$v80$$y2020
000619914 999C5 $$1J Alwall$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2006.11.010$$p300 -$$tComput. Phys. Commun.$$uJ. Alwall et al., A standard format for Les Houches event files. Comput. Phys. Commun. 176(4), 300–304 (2007). https://doi.org/10.1016/j.cpc.2006.11.010$$v176$$y2007
000619914 999C5 $$1L Barze$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2012)037$$p037 -$$tJHEP$$uL. Barze, G. Montagna, P. Nason, O. Nicrosini, F. Piccinini, Implementation of electroweak corrections in the POWHEG BOX: single W production. JHEP 04, 037 (2012). https://doi.org/10.1007/JHEP04(2012)037. arXiv:1202.0465$$v04$$y2012
000619914 999C5 $$1S Alioli$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2008/07/060$$p060 -$$tJHEP$$uS. Alioli, P. Nason, C. Oleari, E. Re, NLO vector-boson production matched with shower in POWHEG. JHEP 07, 060 (2008). https://doi.org/10.1088/1126-6708/2008/07/060. arXiv:0805.4802$$v07$$y2008
000619914 999C5 $$2Crossref$$uJ. Isaacson, Y. Fu, C.P. Yuan, ResBos2 and the CDF W mass measurement (2022). arXiv:2205.02788
000619914 999C5 $$1S Alioli$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-4832-7$$p280 -$$tEur. Phys. J. C$$uS. Alioli et al., Precision studies of observables in $$p p \rightarrow W \rightarrow l\nu _l$$ and $$pp \rightarrow \gamma , Z \rightarrow l^+ l^-$$ processes at the LHC. Eur. Phys. J. C 77(5), 280 (2017). https://doi.org/10.1140/epjc/s10052-017-4832-7. arXiv:1606.02330$$v77$$y2017
000619914 999C5 $$1TA Aaltonen$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.89.072003$$tPhys. Rev. D$$uT.A. Aaltonen et al., Precise measurement of the W -boson mass with the Collider Detector at Fermilab. Phys. Rev. D 89(7), 072003 (2014). https://doi.org/10.1103/PhysRevD.89.072003. arXiv:1311.0894$$v89$$y2014
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.012003$$uV.M. Abazov et al., Study of the normalized transverse momentum distribution of $$W$$ bosons produced in $$p \bar{p}$$ collisions at $$\sqrt{s} = 1.96$$ TeV. Phys. Rev. D 103(1), 012003 (2021). https://doi.org/10.1103/PhysRevD.103.012003. arXiv:2007.13504
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-014-3071-4$$uATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C 74, 3071 (2014). https://doi.org/10.1140/epjc/s10052-014-3071-4. arXiv:1407.5063
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-014-3130-x$$uATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data. Eur. Phys. J. C 74, 3130 (2014). https://doi.org/10.1140/epjc/s10052-014-3130-x. arXiv:1407.3935
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.297.0203$$uV. Bertone et al., xFitter 2.0.0: an open source QCD fit framework. PoS DIS2017, 203 (2018). https://doi.org/10.22323/1.297.0203. arXiv:1709.01151
000619914 999C5 $$1T Carli$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-010-1255-0$$p503 -$$tEur. Phys. J. C$$uT. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G.P. Salam, F. Siegert, P. Starovoitov, M. Sutton, A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID project. Eur. Phys. J. C 66, 503–524 (2010). https://doi.org/10.1140/epjc/s10052-010-1255-0. arXiv:0911.2985$$v66$$y2010
000619914 999C5 $$1JM Campbell$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.60.113006$$tPhys. Rev. D$$uJ.M. Campbell, R.K. Ellis, Update on vector boson pair production at hadron colliders. Phys. Rev. D 60, 113006 (1999). https://doi.org/10.1103/PhysRevD.60.113006. arXiv:hep-ph/9905386$$v60$$y1999
000619914 999C5 $$2Crossref$$uS. Alekhin et al., HERAFitter, open source QCD fit project (2015). arXiv:1410.4412
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.181801$$uT. Aaltonen et al., Direct measurement of the $$W$$ production charge asymmetry in $$p\bar{p}$$ collisions at $$\sqrt{s} = 1.96$$ TeV. Phys. Rev. Lett. 102, 181801 (2009). https://doi.org/10.1103/PhysRevLett.102.181801. arXiv:0901.2169
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.06.043$$uT.A. Aaltonen et al., Measurement of $$d\sigma /dy$$ of Drell–Yan $$e^+e^-$$ pairs in the $$Z$$ mass region from $$p\bar{p}$$ collisions at $$\sqrt{s}=1.96$$ TeV. Phys. Lett. B 692, 232–239 (2010). https://doi.org/10.1016/j.physletb.2010.06.043. arXiv:0908.3914
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.76.012003$$uV.M. Abazov et al., Measurement of the shape of the boson rapidity distribution for $$p \bar{p} \rightarrow Z / \gamma ^* \rightarrow e^{+} e^{-} + X$$ events produced at $$\sqrt{s}$$ of 1.96-TeV. Phys. Rev. D 76, 012003 (2007). https://doi.org/10.1103/PhysRevD.76.012003. arXiv:hep-ex/0702025
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.88.091102$$uV.M. Abazov et al., Measurement of the muon charge asymmetry in $$p\bar{p}$$$$\rightarrow $$ W+X $$\rightarrow $$$$\mu \nu $$ + X Events at $$\sqrt{s}=1.96$$ TeV. Phys. Rev. D 88, 091102 (2013). https://doi.org/10.1103/PhysRevD.88.091102. arXiv:1309.2591
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.032007$$uV.M. Abazov et al., Measurement of the electron charge asymmetry in $${p\bar{p}\rightarrow W+X \rightarrow e\nu +X}$$ decays in $${p\bar{p}}$$ collisions at $${\sqrt{s}=1.96}$$ TeV. Phys. Rev. D 91(3), 032007 (2015). https://doi.org/10.1103/PhysRevD.91.032007. arXiv:1412.2862. [Erratum: Phys. Rev. D 91, 079901 (2015)]
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-4911-9$$uM. Aaboud et al., Precision measurement and interpretation of inclusive $$W^+$$, $$W^-$$ and $$Z/\gamma ^*$$ production cross sections with the ATLAS detector. Eur. Phys. J. C 77(6), 367 (2017). https://doi.org/10.1140/epjc/s10052-017-4911-9. arXiv:1612.03016
000619914 999C5 $$1JC Collins$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.16.2219$$p2219 -$$tPhys. Rev. D$$uJ.C. Collins, D.E. Soper, Angular distribution of dileptons in high-energy hadron collisions. Phys. Rev. D 16, 2219 (1977). https://doi.org/10.1103/PhysRevD.16.2219$$v16$$y1977
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2016)159$$uATLAS Collaboration, Measurement of the angular coefficients in $$Z$$-boson events using electron and muon pairs from data taken at $$\sqrt{s} = 8\,{{\rm TeV}}$$ with the ATLAS detector. JHEP 08, 159 (2016). https://doi.org/10.1007/JHEP08(2016)159. arXiv:1606.00689
000619914 999C5 $$1CM Carloni Calame$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.093005$$tPhys. Rev. D$$uC.M. Carloni Calame, M. Chiesa, H. Martinez, G. Montagna, O. Nicrosini, F. Piccinini, A. Vicini, Precision measurement of the $$W$$-boson mass: theoretical contributions and uncertainties. Phys. Rev. D 96, 093005 (2017). https://doi.org/10.1103/PhysRevD.96.093005$$v96$$y2017
000619914 999C5 $$1U Baur$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.59.013002$$tPhys. Rev. D$$uU. Baur, S. Keller, D. Wackeroth, Electroweak radiative corrections to $$W$$ boson production in hadronic collisions. Phys. Rev. D 59, 013002 (1999). https://doi.org/10.1103/PhysRevD.59.013002. arXiv:hep-ph/9807417$$v59$$y1999
000619914 999C5 $$1U Baur$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.70.073015$$tPhys. Rev. D$$uU. Baur, D. Wackeroth, Electroweak radiative corrections to $$p \bar{p} \rightarrow W^\pm \rightarrow \ell ^\pm \nu $$ beyond the pole approximation. Phys. Rev. D 70, 073015 (2004). https://doi.org/10.1103/PhysRevD.70.073015. arXiv:hep-ph/0405191$$v70$$y2004
000619914 999C5 $$1W Placzek$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2003-01223-4$$p325 -$$tEur. Phys. J. C$$uW. Placzek, S. Jadach, Multiphoton radiation in leptonic W boson decays. Eur. Phys. J. C 29, 325–339 (2003). https://doi.org/10.1140/epjc/s2003-01223-4. arXiv:hep-ph/0302065$$v29$$y2003
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.084.0340$$uW. Placzek, WINHAC: the Monte Carlo event generator for single W-boson production in hadronic collisions. PoS EPS-HEP2009, 340 (2009). https://doi.org/10.22323/1.084.0340. arXiv:0911.0572
000619914 999C5 $$1W Płaczek$$2Crossref$$9-- missing cx lookup --$$a10.5506/APhysPolB.44.2171$$p2171 -$$tActa Phys. Pol. B$$uW. Płaczek, S. Jadach, M.W. Krasny, Drell–Yan processes with WINHAC. Acta Phys. Pol. B 44(11), 2171–2178 (2013). https://doi.org/10.5506/APhysPolB.44.2171. arXiv:1310.5994$$v44$$y2013
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.69.037301$$uC.M. Carloni Calame, G. Montagna, O. Nicrosini, M. Treccani, Higher order QED corrections to W boson mass determination at hadron colliders. Phys. Rev. D 69, 037301 (2004). https://doi.org/10.1103/PhysRevD.69.037301. arXiv:hep-ph/0303102
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2006/12/016$$uC.M. Carloni Calame, G. Montagna, O. Nicrosini, A. Vicini, Precision electroweak calculation of the charged current Drell–Yan process. JHEP 12, 016 (2006). https://doi.org/10.1088/1126-6708/2006/12/016. arXiv:hep-ph/0609170
000619914 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/10/109$$uC.M. Carloni Calame, G. Montagna, O. Nicrosini, A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders. JHEP 10, 109 (2007). https://doi.org/10.1088/1126-6708/2007/10/109. arXiv:0710.1722
000619914 999C5 $$1A Behring$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.113002$$tPhys. Rev. D$$uA. Behring, F. Buccioni, F. Caola, M. Delto, M. Jaquier, K. Melnikov, R. Röntsch, Estimating the impact of mixed QCD-electroweak corrections on the $$w$$-mass determination at the LHC. Phys. Rev. D 103, 113002 (2021). https://doi.org/10.1103/PhysRevD.103.113002$$v103$$y2021
000619914 999C5 $$1G Bozzi$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3810-1$$p601 -$$tEur. Phys. J. C$$uG. Bozzi, L. Citelli, M. Vesterinen, A. Vicini, Prospects for improving the LHC W boson mass measurement with forward muons. Eur. Phys. J. C 75(12), 601 (2015). https://doi.org/10.1140/epjc/s10052-015-3810-1. arXiv:1508.06954$$v75$$y2015