000619866 001__ 619866
000619866 005__ 20250715170858.0
000619866 0247_ $$2doi$$a10.1007/JHEP08(2024)122
000619866 0247_ $$2INSPIRETeX$$aHarris:2024nmr
000619866 0247_ $$2inspire$$ainspire:2750175
000619866 0247_ $$2ISSN$$a1126-6708
000619866 0247_ $$2ISSN$$a1029-8479
000619866 0247_ $$2ISSN$$a1127-2236
000619866 0247_ $$2arXiv$$aarXiv:2401.10986
000619866 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-07971
000619866 0247_ $$2WOS$$aWOS:001350146800004
000619866 0247_ $$2openalex$$aopenalex:W4401684081
000619866 037__ $$aPUBDB-2024-07971
000619866 041__ $$aEnglish
000619866 082__ $$a530
000619866 088__ $$2arXiv$$aarXiv:2401.10986
000619866 088__ $$2DESY$$aDESY-24-012
000619866 1001_ $$0P:(DE-H253)PIP1102307$$aHarris, Sebastian$$b0
000619866 245__ $$aComb channel lightcone bootstrap: triple-twist anomalous dimensions
000619866 260__ $$a[Trieste]$$bSISSA$$c2024
000619866 3367_ $$2DRIVER$$aarticle
000619866 3367_ $$2DataCite$$aOutput Types/Journal article
000619866 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734689992_2139093
000619866 3367_ $$2BibTeX$$aARTICLE
000619866 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000619866 3367_ $$00$$2EndNote$$aJournal Article
000619866 500__ $$a83 pages, 6 figures; v2: Published version. Added more details in some text and equations. Added subsection 7.2.3
000619866 520__ $$aWe advance the multipoint lightcone bootstrap and compute anomalous dimensions of triple-twist operators at large spin. In contrast to the well-studied double-twist operators, triple-twist primaries are highly degenerate so that their anomalous dimension is encoded in a matrix. At large spin, the degeneracy becomes infinite and the matrix becomes an integral operator. We compute this integral operator by studying a particular non-planar crossing equation for six-point functions of scalar operators in a lightcone limit. The bootstrap analysis is based on new formulas for six-point lightcone blocks in the comb-channel. For a consistency check of our results, we compare them to perturbative computations in the epsilon expansion of $\phi^3$ and $\phi^4$ theory. In both cases, we find perfect agreement between perturbative results and bootstrap predictions. As a byproduct of our studies, we extend earlier work of Derkachov and Manashov to compute the anomalous dimension matrices of all triple-twist primaries in scalar $\phi^3$ and $\phi^4$ theory to first and second order in epsilon, respectively.
000619866 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000619866 536__ $$0G:(EU-Grant)865075$$aEXACTC - Solving gauge theories in 4D: Exact correlation functions from integrability (865075)$$c865075$$fERC-2019-COG$$x1
000619866 536__ $$0G:(GEPRIS)390833306$$aDFG project 390833306 - EXC 2121: Quantum Universe (390833306)$$c390833306$$x2
000619866 542__ $$2Crossref$$i2024-08-16$$uhttps://creativecommons.org/licenses/by/4.0
000619866 542__ $$2Crossref$$i2024-08-16$$uhttps://creativecommons.org/licenses/by/4.0
000619866 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000619866 650_7 $$2INSPIRE$$aoperator: scalar
000619866 650_7 $$2INSPIRE$$an-point function: 6
000619866 650_7 $$2INSPIRE$$aanomalous dimension
000619866 650_7 $$2INSPIRE$$abootstrap
000619866 650_7 $$2INSPIRE$$aspin: high
000619866 650_7 $$2INSPIRE$$acrossing
000619866 650_7 $$2INSPIRE$$aepsilon expansion
000619866 650_7 $$2INSPIRE$$aphi**n model: 3
000619866 650_7 $$2INSPIRE$$aphi**n model: 4
000619866 650_7 $$2INSPIRE$$aoperator: twist
000619866 650_7 $$2autogen$$aScale and Conformal Symmetries
000619866 650_7 $$2autogen$$aRenormalization Group
000619866 650_7 $$2autogen$$aSpace-Time Symmetries
000619866 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000619866 7001_ $$0P:(DE-H253)PIP1094539$$aKaviraj, Apratim$$b1
000619866 7001_ $$0P:(DE-H253)PIP1091224$$aMann, Jeremy A.$$b2$$eCorresponding author
000619866 7001_ $$0P:(DE-H253)PIP1086632$$aQuintavalle, Lorenzo$$b3
000619866 7001_ $$0P:(DE-H253)PIP1004538$$aSchomerus, Volker$$b4
000619866 77318 $$2Crossref$$3journal-article$$a10.1007/jhep08(2024)122$$bSpringer Science and Business Media LLC$$d2024-08-16$$n8$$p122$$tJournal of High Energy Physics$$v2024$$x1029-8479$$y2024
000619866 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP08(2024)122$$gVol. 08, no. 8, p. 122$$n8$$p122$$tJournal of high energy physics$$v2024$$x1029-8479$$y2024
000619866 7870_ $$0PUBDB-2024-00294$$aHarris, Sebastian et.al.$$d2024$$iIsParent$$rDESY-24-012 ; arXiv:2401.10986$$tComb Channel Lightcone Bootstrap II: Triple-Twist Anomalous Dimensions
000619866 8564_ $$uhttps://bib-pubdb1.desy.de/record/619866/files/JHEP08%282024%29122.pdf$$yOpenAccess
000619866 8564_ $$uhttps://bib-pubdb1.desy.de/record/619866/files/JHEP08%282024%29122.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000619866 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-27$$eAPC$$jFlatrate$$lSCOAP3
000619866 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-27$$eAPC$$jStorniert$$lSCOAP3$$zDFG OAPK (Projekt)
000619866 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-27$$eAPC$$jZahlung erfolgt$$lSCOAP3$$zDFG OAPK (Projekt)
000619866 909CO $$ooai:bib-pubdb1.desy.de:619866$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000619866 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1102307$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000619866 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094539$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000619866 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1091224$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000619866 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086632$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000619866 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1004538$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000619866 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000619866 9141_ $$y2024
000619866 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000619866 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000619866 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000619866 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:11Z
000619866 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:11Z
000619866 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000619866 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000619866 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-10-24
000619866 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:11Z
000619866 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-16$$wger
000619866 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000619866 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000619866 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000619866 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000619866 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000619866 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000619866 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000619866 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000619866 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000619866 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000619866 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000619866 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000619866 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000619866 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000619866 9801_ $$aFullTexts
000619866 980__ $$ajournal
000619866 980__ $$aVDB
000619866 980__ $$aUNRESTRICTED
000619866 980__ $$aI:(DE-H253)T-20120731
000619866 980__ $$aAPC
000619866 999C5 $$1S El-Showk$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.86.025022$$tPhys. Rev. D$$uS. El-Showk et al., Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].$$v86$$y2012
000619866 999C5 $$1S El-Showk$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10955-014-1042-7$$p869 -$$tJ. Stat. Phys.$$uS. El-Showk et al., Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].$$v157$$y2014
000619866 999C5 $$1F Kos$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2014)109$$p109 -$$tJHEP$$uF. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].$$v11$$y2014
000619866 999C5 $$1D Simmons-Duffin$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2017)086$$p086 -$$tJHEP$$uD. Simmons-Duffin, The lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].$$v03$$y2017
000619866 999C5 $$1S Caron-Huot$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2021)243$$p243 -$$tJHEP$$uS. Caron-Huot, D. Mazac, L. Rastelli and D. Simmons-Duffin, Dispersive CFT Sum Rules, JHEP 05 (2021) 243 [arXiv:2008.04931] [INSPIRE].$$v05$$y2021
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2020)115$$uJ. Liu, D. Meltzer, D. Poland and D. Simmons-Duffin, The lorentzian inversion formula and the spectrum of the 3d O(2) CFT, JHEP 09 (2020) 115 [Erratum ibid. 01 (2021) 206] [arXiv:2007.07914] [INSPIRE].
000619866 999C5 $$2Crossref$$uN. Su, The Hybrid Bootstrap, arXiv:2202.07607 [INSPIRE].
000619866 999C5 $$1F Kos$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2014)091$$p091 -$$tJHEP$$uF. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].$$v06$$y2014
000619866 999C5 $$1F Kos$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2015)106$$p106 -$$tJHEP$$uF. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) Archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].$$v11$$y2015
000619866 999C5 $$1SM Chester$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2020)142$$p142 -$$tJHEP$$uS.M. Chester et al., Carving out OPE space and precise O(2) model critical exponents, JHEP 06 (2020) 142 [arXiv:1912.03324] [INSPIRE].$$v06$$y2020
000619866 999C5 $$1RS Erramilli$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2023)036$$p036 -$$tJHEP$$uR.S. Erramilli et al., The Gross-Neveu-Yukawa archipelago, JHEP 02 (2023) 036 [arXiv:2210.02492] [INSPIRE].$$v02$$y2023
000619866 999C5 $$1V Rosenhaus$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2019)142$$p142 -$$tJHEP$$uV. Rosenhaus, Multipoint Conformal Blocks in the Comb Channel, JHEP 02 (2019) 142 [arXiv:1810.03244] [INSPIRE].$$v02$$y2019
000619866 999C5 $$2Crossref$$uJ.-F. Fortin, W.-J. Ma and W. Skiba, All Global One- and Two-Dimensional Higher-Point Conformal Blocks, arXiv:2009.07674 [INSPIRE].
000619866 999C5 $$1K Alkalaev$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2023.116413$$tNucl. Phys. B$$uK. Alkalaev, A. Kanoda and V. Khiteev, Wilson networks in AdS and global conformal blocks, Nucl. Phys. B 998 (2024) 116413 [arXiv:2307.08395] [INSPIRE].$$v998$$y2024
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2024)031$$uJ.-F. Fortin et al., One- and two-dimensional higher-point conformal blocks as free-particle wavefunctions in $$ {AdS}_3^{\otimes m} $$, JHEP 01 (2024) 031 [arXiv:2310.08632] [INSPIRE].
000619866 999C5 $$1V Gonçalves$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2019)247$$p247 -$$tJHEP$$uV. Gonçalves, R. Pereira and X. Zhou, 20′ Five-Point Function from AdS5 × S5 Supergravity, JHEP 10 (2019) 247 [arXiv:1906.05305] [INSPIRE].$$v10$$y2019
000619866 999C5 $$1J-F Fortin$$2Crossref$$uJ.-F. Fortin, W.-J. Ma and W. Skiba, Seven-point conformal blocks in the extended snowflake channel and beyond, Phys. Rev. D 102 (2020) 125007 [arXiv:2006.13964] [INSPIRE].$$y2020
000619866 999C5 $$1S Hoback$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2021)187$$p187 -$$tJHEP$$uS. Hoback and S. Parikh, Dimensional reduction of higher-point conformal blocks, JHEP 03 (2021) 187 [arXiv:2009.12904] [INSPIRE].$$v03$$y2021
000619866 999C5 $$1D Poland$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2021)160$$p160 -$$tJHEP$$uD. Poland and V. Prilepina, Recursion relations for 5-point conformal blocks, JHEP 10 (2021) 160 [arXiv:2103.12092] [INSPIRE].$$v10$$y2021
000619866 999C5 $$1I Buric$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.021602$$tPhys. Rev. Lett.$$uI. Buric et al., From Gaudin Integrable Models to d-dimensional Multipoint Conformal Blocks, Phys. Rev. Lett. 126 (2021) 021602 [arXiv:2009.11882] [INSPIRE].$$v126$$y2021
000619866 999C5 $$1I Buric$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2021)139$$p139 -$$tJHEP$$uI. Buric et al., Gaudin models and multipoint conformal blocks: general theory, JHEP 10 (2021) 139 [arXiv:2105.00021] [INSPIRE].$$v10$$y2021
000619866 999C5 $$1I Buric$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2021)182$$p182 -$$tJHEP$$uI. Buric et al., Gaudin models and multipoint conformal blocks. Part II. Comb channel vertices in 3D and 4D, JHEP 11 (2021) 182 [arXiv:2108.00023] [INSPIRE].$$v11$$y2021
000619866 999C5 $$1I Buric$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2022)144$$p144 -$$tJHEP$$uI. Buric et al., Gaudin models and multipoint conformal blocks III: comb channel coordinates and OPE factorisation, JHEP 06 (2022) 144 [arXiv:2112.10827] [INSPIRE].$$v06$$y2022
000619866 999C5 $$1J-F Fortin$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2022)097$$p097 -$$tJHEP$$uJ.-F. Fortin et al., Feynman rules for scalar conformal blocks, JHEP 10 (2022) 097 [arXiv:2204.08909] [INSPIRE].$$v10$$y2022
000619866 999C5 $$1D Poland$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2024)299$$p299 -$$tJHEP$$uD. Poland, V. Prilepina and P. Tadić, Improving the five-point bootstrap, JHEP 05 (2024) 299 [arXiv:2312.13344] [INSPIRE].$$v05$$y2024
000619866 999C5 $$1D Poland$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2023)153$$p153 -$$tJHEP$$uD. Poland, V. Prilepina and P. Tadić, The five-point bootstrap, JHEP 10 (2023) 153 [arXiv:2305.08914] [INSPIRE].$$v10$$y2023
000619866 999C5 $$1A Antunes$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2024)058$$p058 -$$tJHEP$$uA. Antunes, S. Harris, A. Kaviraj and V. Schomerus, Lining up a positive semi-definite six-point bootstrap, JHEP 06 (2024) 058 [arXiv:2312.11660] [INSPIRE].$$v06$$y2024
000619866 999C5 $$1C Bercini$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.121603$$tPhys. Rev. Lett.$$uC. Bercini, V. Gonçalves and P. Vieira, Light-Cone Bootstrap of Higher Point Functions and Wilson Loop Duality, Phys. Rev. Lett. 126 (2021) 121603 [arXiv:2008.10407] [INSPIRE].$$v126$$y2021
000619866 999C5 $$1C Bercini$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2022)079$$p079 -$$tJHEP$$uC. Bercini, V. Gonçalves, A. Homrich and P. Vieira, The Wilson loop — large spin OPE dictionary, JHEP 07 (2022) 079 [arXiv:2110.04364] [INSPIRE].$$v07$$y2022
000619866 999C5 $$1A Antunes$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2022)139$$p139 -$$tJHEP$$uA. Antunes, M.S. Costa, V. Goncalves and J.V. Boas, Lightcone bootstrap at higher points, JHEP 03 (2022) 139 [arXiv:2111.05453] [INSPIRE].$$v03$$y2022
000619866 999C5 $$1A Kaviraj$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2023)011$$p011 -$$tJHEP$$uA. Kaviraj, J.A. Mann, L. Quintavalle and V. Schomerus, Multipoint lightcone bootstrap from differential equations, JHEP 08 (2023) 011 [arXiv:2212.10578] [INSPIRE].$$v08$$y2023
000619866 999C5 $$1T Anous$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2022)102$$p102 -$$tJHEP$$uT. Anous, A. Belin, J. de Boer and D. Liska, OPE statistics from higher-point crossing, JHEP 06 (2022) 102 [arXiv:2112.09143] [INSPIRE].$$v06$$y2022
000619866 999C5 $$1AL Fitzpatrick$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2013)004$$p004 -$$tJHEP$$uA.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].$$v12$$y2013
000619866 999C5 $$1Z Komargodski$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2013)140$$p140 -$$tJHEP$$uZ. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].$$v11$$y2013
000619866 999C5 $$1S Pal$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00220-023-04767-w$$p2169 -$$tCommun. Math. Phys.$$uS. Pal, J. Qiao and S. Rychkov, Twist Accumulation in Conformal Field Theory: A rigorous Approach to the Lightcone Bootstrap, Commun. Math. Phys. 402 (2023) 2169 [arXiv:2212.04893] [INSPIRE].$$v402$$y2023
000619866 999C5 $$1LF Alday$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2017)157$$p157 -$$tJHEP$$uL.F. Alday and A. Zhiboedov, An algebraic Approach to the Analytic Bootstrap, JHEP 04 (2017) 157 [arXiv:1510.08091] [INSPIRE].$$v04$$y2017
000619866 999C5 $$1LF Alday$$2Crossref$$uL.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].$$y2017
000619866 999C5 $$1A Kaviraj$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2015)083$$p083 -$$tJHEP$$uA. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, JHEP 11 (2015) 083 [arXiv:1502.01437] [INSPIRE].$$v11$$y2015
000619866 999C5 $$1A Kaviraj$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2015)026$$p026 -$$tJHEP$$uA. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP 07 (2015) 026 [arXiv:1504.00772] [INSPIRE].$$v07$$y2015
000619866 999C5 $$1DM Hofman$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2016)111$$p111 -$$tJHEP$$uD.M. Hofman et al., A proof of the Conformal Collider Bounds, JHEP 06 (2016) 111 [arXiv:1603.03771] [INSPIRE].$$v06$$y2016
000619866 999C5 $$1D Li$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2016)143$$p143 -$$tJHEP$$uD. Li, D. Meltzer and D. Poland, Conformal Collider Physics from the Lightcone Bootstrap, JHEP 02 (2016) 143 [arXiv:1511.08025] [INSPIRE].$$v02$$y2016
000619866 999C5 $$1D Li$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2016)149$$p149 -$$tJHEP$$uD. Li, D. Meltzer and D. Poland, Non-Abelian Binding Energies from the Lightcone Bootstrap, JHEP 02 (2016) 149 [arXiv:1510.07044] [INSPIRE].$$v02$$y2016
000619866 999C5 $$1S Caron-Huot$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2017)078$$p078 -$$tJHEP$$uS. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].$$v09$$y2017
000619866 999C5 $$1P Kravchuk$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2018)102$$p102 -$$tJHEP$$uP. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11 (2018) 102 [arXiv:1805.00098] [INSPIRE].$$v11$$y2018
000619866 999C5 $$1L Cornalba$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/08/019$$p019 -$$tJHEP$$uL. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP 08 (2007) 019 [hep-th/0611122] [INSPIRE].$$v08$$y2007
000619866 999C5 $$1L Cornalba$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2007.01.007$$p327 -$$tNucl. Phys. B$$uL. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions, Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [INSPIRE].$$v767$$y2007
000619866 999C5 $$1L Cornalba$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/09/037$$p037 -$$tJHEP$$uL. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [INSPIRE].$$v09$$y2007
000619866 999C5 $$1AL Fitzpatrick$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2014)145$$p145 -$$tJHEP$$uA.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].$$v08$$y2014
000619866 999C5 $$1AL Fitzpatrick$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2015)019$$p019 -$$tJHEP$$uA.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Eikonalization of Conformal Blocks, JHEP 09 (2015) 019 [arXiv:1504.01737] [INSPIRE].$$v09$$y2015
000619866 999C5 $$2Crossref$$uA. Homrich, D. Simmons-Duffin and P. Vieira, Complex Spin: The Missing Zeroes and Newton’s Dark Magic, arXiv:2211.13754 [INSPIRE].
000619866 999C5 $$2Crossref$$uJ. Henriksson, P. Kravchuk and B. Oertel, Missing local operators, zeros, and twist-4 trajectories, arXiv:2312.09283 [INSPIRE].
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(93)90124-8$$uS. Kehrein, F. Wegner and Y. Pismak, Conformal symmetry and the spectrum of anomalous dimensions in the N vector model in four epsilon dimensions, Nucl. Phys. B 402 (1993) 669 [INSPIRE].
000619866 999C5 $$1SE Derkachov$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(95)00513-R$$p685 -$$tNucl. Phys. B$$uS.E. Derkachov and A.N. Manashov, The spectrum of the anomalous dimensions of the composite operators in epsilon expansion in the scalar phi**4 field theory, Nucl. Phys. B 455 (1995) 685 [hep-th/9505110] [INSPIRE].$$v455$$y1995
000619866 999C5 $$1SK Kehrein$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(95)00375-3$$p777 -$$tNucl. Phys. B$$uS.K. Kehrein, The spectrum of critical exponents in phi**2 in two-dimensions theory in D = (4-epsilon)-dimensions: Resolution of degeneracies and hierarchical structures, Nucl. Phys. B 453 (1995) 777 [hep-th/9507044] [INSPIRE].$$v453$$y1995
000619866 999C5 $$2Crossref$$uS.E. Derkachov and A.N. Manashov, Spectrum of anomalous dimensions in scalar field theory, NORDITA-97-76-P (1997) [INSPIRE].
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(97)00131-4$$uS.E. Derkachov, S.K. Kehrein and A.N. Manashov, High-gradient operators in the N-vector model, Nucl. Phys. B 493 (1997) 660 [cond-mat/9610106] [INSPIRE].
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.2020$$uV.M. Braun, S.E. Derkachov and A.N. Manashov, Integrability of three particle evolution equations in QCD, Phys. Rev. Lett. 81 (1998) 2020 [hep-ph/9805225] [INSPIRE].
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(99)00265-5$$uV.M. Braun, S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Baryon distribution amplitudes in QCD, Nucl. Phys. B 553 (1999) 355 [hep-ph/9902375] [INSPIRE].
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(99)00402-2$$uA.V. Belitsky, Integrability and WKB solution of twist - three evolution equations, Nucl. Phys. B 558 (1999) 259 [hep-ph/9903512] [INSPIRE].
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11005-011-0516-7$$uG.P. Korchemsky, Review of AdS/CFT Integrability, Chapter IV.4: Integrability in QCD and N<4 SYM, Lett. Math. Phys. 99 (2012) 425 [arXiv:1012.4000] [INSPIRE].
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2024)185$$uN. Gromov, A. Hegedus, J. Julius and N. Sokolova, Fast QSC solver: tool for systematic study of $$ \mathcal{N} $$ = 4 Super-Yang-Mills spectrum, JHEP 05 (2024) 185 [arXiv:2306.12379] [INSPIRE].
000619866 999C5 $$1FA Dolan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2003.11.016$$p491 -$$tNucl. Phys. B$$uF.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].$$v678$$y2004
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10958-010-0032-9$$uS.E. Derkachov and A.N. Manashov, Anomalous dimensions of composite operators in scalar field theories, J. Math. Sci. 168 (2010) 837 [INSPIRE].
000619866 999C5 $$2Crossref$$uG. Szego, Orthogonal polynomials, volume 23, American Mathematical Soc. (1939).
000619866 999C5 $$2Crossref$$uF.W.J. Olver et al. eds., NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/.
000619866 999C5 $$1LF Alday$$2Crossref$$uL.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].$$y2015
000619866 999C5 $$1JA Gracey$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.025012$$tPhys. Rev. D$$uJ.A. Gracey, Four loop renormalization of ϕ3 theory in six dimensions, Phys. Rev. D 92 (2015) 025012 [arXiv:1506.03357] [INSPIRE].$$v92$$y2015
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/13/7/006$$uO.F. de Alcantara Bonfim, J.E. Kirkham and A.J. McKane, Critical Exponents to Order ϵ3 for ϕ3 Models of Critical Phenomena in Six ϵ-dimensions, J. Phys. A 13 (1980) L247 [Erratum ibid. 13 (1980) 3785] [INSPIRE].
000619866 999C5 $$1C Hasegawa$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217732317500456$$p1750045 -$$tMod. Phys. Lett. A$$uC. Hasegawa and Y. Nakayama, ϵ-Expansion in Critical ϕ3-Theory on Real Projective Space from Conformal Field Theory, Mod. Phys. Lett. A 32 (2017) 1750045 [arXiv:1611.06373] [INSPIRE].$$v32$$y2017
000619866 999C5 $$1R Gopakumar$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2017)027$$p027 -$$tJHEP$$uR. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].$$v05$$y2017
000619866 999C5 $$1F Bertucci$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2022)104$$p104 -$$tJHEP$$uF. Bertucci, J. Henriksson and B. McPeak, Analytic bootstrap of mixed correlators in the O(n) CFT, JHEP 10 (2022) 104 [arXiv:2205.09132] [INSPIRE].$$v10$$y2022
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(74)90023-4$$uK.G. Wilson and J.B. Kogut, The renormalization group and the epsilon expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].
000619866 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s100529800706$$uS.E. Derkachov, J.A. Gracey and A.N. Manashov, Four loop anomalous dimensions of gradient operators in ϕ4 theory, Eur. Phys. J. C 2 (1998) 569.
000619866 999C5 $$1P Dey$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2018)153$$p153 -$$tJHEP$$uP. Dey and A. Kaviraj, Towards a Bootstrap approach to higher orders of epsilon expansion, JHEP 02 (2018) 153 [arXiv:1711.01173] [INSPIRE].$$v02$$y2018
000619866 999C5 $$2Crossref$$uJ. Henriksson, Private communication.
000619866 999C5 $$2Crossref$$uP. Kravchuk and J. Mann, in preparation.
000619866 999C5 $$1G Cuomo$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2023)006$$p006 -$$tJHEP$$uG. Cuomo and Z. Komargodski, Giant Vortices and the Regge Limit, JHEP 01 (2023) 006 [arXiv:2210.15694] [INSPIRE].$$v01$$y2023
000619866 999C5 $$2Crossref$$uG. Cuomo, Z. Komargodski and S. Zhong, Chiral Modes of Giant Superfluid Vortices, arXiv:2312.06095 [INSPIRE].
000619866 999C5 $$1G Cuomo$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2024)161$$p161 -$$tJHEP$$uG. Cuomo et al., Numerical tests of the large charge expansion, JHEP 05 (2024) 161 [arXiv:2305.00499] [INSPIRE].$$v05$$y2024
000619866 999C5 $$1D Jafferis$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2018)043$$p043 -$$tJHEP$$uD. Jafferis, B. Mukhametzhanov and A. Zhiboedov, Conformal Bootstrap At Large Charge, JHEP 05 (2018) 043 [arXiv:1710.11161] [INSPIRE].$$v05$$y2018
000619866 999C5 $$1T Anous$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2016)123$$p123 -$$tJHEP$$uT. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].$$v07$$y2016
000619866 999C5 $$2Crossref$$uS.E. Derkachov, Factorization of the R-matrix. I, math/0503396 [INSPIRE].