001     619731
005     20250122165508.0
024 7 _ |a arXiv:2412.14106
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2024-07866
|2 datacite_doi
037 _ _ |a PUBDB-2024-07866
041 _ _ |a English
088 _ _ |a DESY-24-205
|2 DESY
088 _ _ |a arXiv:2412.14106
|2 arXiv
088 _ _ |a IFT UAM-CSIC 24-183
|2 Other
100 1 _ |a Konstandin, Thomas
|0 P:(DE-H253)PIP1015746
|b 0
245 _ _ |a Intrinsic non-Gaussianity of ultra slow-roll inflation
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1737463263_4009342
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 28 pages, 7 figures; v2: added references + modified figure, results unaffected
520 _ _ |a We study the non-Gaussian tail of the curvature fluctuation, $\zeta$, in an inflationary scenario with a transient ultra slow-roll phase that generates a localized large enhancement of the spectrum of $\zeta$. To do so, we implement a numerical procedure that provides the probability distribution of $\zeta$ order by order in perturbation theory. The non-Gaussianities of $\zeta$ can be shown to arise from its non-linear relation to the inflaton fluctuations and from the intrinsic non-Gaussianities of the latter, which stem from its self interactions. We find that intrinsic non-Gaussianities, which have often been ignored to estimate the abundance of primordial black holes in this kind of scenario, are important. The relevance of the intrinsic contribution depends on the rapidity with which the transient ultra slow-roll phase occurs, as well as on its duration. Our method cannot be used accurately when the perturbative in-in formalism fails to apply, highlighting the relevance of developing fully non-perturbative approaches to the problem.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)
|0 G:(GEPRIS)390833306
|c 390833306
|x 1
588 _ _ |a Dataset connected to DataCite
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Ballesteros, Guillermo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Egea, Jesús Gambín
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rodríguez, Alejandro Pérez
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pierre, Mathias
|0 P:(DE-H253)PIP1098681
|b 4
|e Corresponding author
700 1 _ |a Rey Idler, Julian Leonardo
|0 P:(DE-H253)PIP1099356
|b 5
856 4 _ |u https://bib-pubdb1.desy.de/record/619731/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/619731/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/619731/files/2412.14106v2.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/619731/files/2412.14106v2.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:619731
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1015746
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1098681
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1099356
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)T-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21