001     619696
005     20250930095509.0
024 7 _ |a 10.1021/acs.biochem.7b00750
|2 doi
024 7 _ |a 0006-2960
|2 ISSN
024 7 _ |a 1520-4995
|2 ISSN
024 7 _ |a 1943-295X
|2 ISSN
024 7 _ |a altmetric:24722072
|2 altmetric
024 7 _ |a pmid:28857549
|2 pmid
024 7 _ |a WOS:000412966200022
|2 WOS
024 7 _ |a openalex:W2750923951
|2 openalex
037 _ _ |a PUBDB-2024-07835
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Mazzei, Luca
|b 0
245 _ _ |a Urease Inhibition in the Presence of N -( n -Butyl)thiophosphoric Triamide, a Suicide Substrate: Structure and Kinetics
260 _ _ |a Columbus, Ohio
|c 2017
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734514051_2763690
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The nickel-dependent enzyme urease is a virulence factor for a large number of pathogenic and antibiotic-resistant bacteria, as well as a negative factor for the efficiency of soil nitrogen fertilization for crop production. The use of urease inhibitors to offset these effects requires knowledge, at a molecular level, of their mode of action. The 1.28 Å resolution structure of the enzyme–inhibitor complex obtained upon incubation of Sporosarcina pasteurii urease with N-(n-butyl)thiophosphoric triamide (NBPT), a molecule largely utilized in agriculture, reveals the presence of the monoamidothiophosphoric acid (MATP) moiety, obtained upon enzymatic hydrolysis of the diamide derivative of NBPT (NBPD) to yield n-butyl amine. MATP is bound to the two Ni(II) ions in the active site of urease using a μ2-bridging O atom and terminally bound O and NH2 groups, with the S atom of the thiophosphoric amide pointing away from the metal center. The mobile flap modulating the size of the active site cavity is found in the closed conformation. Docking calculations suggest that the interaction between urease in the open flap conformation and NBPD involves a role for the conserved αArg339 in capturing and orienting the inhibitor prior to flap closure. Calorimetric and spectrophotometric determinations of the kinetic parameters of this inhibition indicate the occurrence of a reversible slow inhibition mode of action, characterized, for both bacterial and plant ureases, by a very small value of the dissociation constant of the urease–MATP complex. No need to convert NBPT to its oxo derivative NBPTO, as previously proposed, is necessary for urease inhibition.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P13
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P13-20150101
|6 EXP:(DE-H253)P-P13-20150101
|x 0
700 1 _ |a Cianci, Michele
|b 1
700 1 _ |a Contaldo, Umberto
|b 2
700 1 _ |a Musiani, Francesco
|0 0000-0003-0200-1712
|b 3
700 1 _ |a Ciurli, Stefano
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acs.biochem.7b00750
|g Vol. 56, no. 40, p. 5391 - 5404
|0 PERI:(DE-600)1472258-6
|n 40
|p 5391 - 5404
|t Biochemistry
|v 56
|y 2017
|x 0006-2960
856 4 _ |u https://pubs.acs.org/doi/10.1021/acs.biochem.7b00750
856 4 _ |u https://bib-pubdb1.desy.de/record/619696/files/Urease%20Inhibition%20in%20the%20Presence%20of%20N%20n%20-Butylthiophosphoric%20Triamide%20a%20Suicide%20Substrate%20Structure%20and%20Kinetics.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/619696/files/Urease%20Inhibition%20in%20the%20Presence%20of%20N%20n%20-Butylthiophosphoric%20Triamide%20a%20Suicide%20Substrate%20Structure%20and%20Kinetics.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:619696
|p VDB
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOCHEMISTRY-US : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21