000619694 001__ 619694
000619694 005__ 20250715171227.0
000619694 0247_ $$2doi$$a10.1038/s42005-024-01760-0
000619694 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-07833
000619694 0247_ $$2altmetric$$aaltmetric:158731759
000619694 0247_ $$2WOS$$aWOS:001288922100002
000619694 0247_ $$2openalex$$aopenalex:W4401483975
000619694 037__ $$aPUBDB-2024-07833
000619694 041__ $$aEnglish
000619694 082__ $$a530
000619694 1001_ $$0P:(DE-H253)PIP1105420$$aThomarat, Laure$$b0
000619694 245__ $$aTuning of charge order by uniaxial stress in a cuprate superconductor
000619694 260__ $$aLondon$$bSpringer Nature$$c2024
000619694 3367_ $$2DRIVER$$aarticle
000619694 3367_ $$2DataCite$$aOutput Types/Journal article
000619694 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736937121_3058687
000619694 3367_ $$2BibTeX$$aARTICLE
000619694 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000619694 3367_ $$00$$2EndNote$$aJournal Article
000619694 520__ $$aStrongly correlated electron materials are often characterized by competition and interplay of multiple quantum states. For example, in high-temperature cuprate superconductors unconventional superconductivity, spin- and charge-density wave orders coexist. A key question is whether competing states coexist on the atomic scale or if they segregate into distinct regions. Using X-ray diffraction, we investigate the competition between charge order and superconductivity in the archetypal cuprate La$_{2−x}$Ba$_x$CuO$_4$, around x = 1/8-doping, where uniaxial stress restores optimal 3D superconductivity at σ3D ≈ 0.06 GPa. We find that the charge order peaks and the correlation length along the stripe are strongly reduced up to σ3D. Upon the increase of stress beyond this point, no further changes were observed. Simultaneously, the charge order onset temperature only shows a modest decrease. Our findings suggest that optimal 3D superconductivity is not linked to the absence of charge stripes but instead requires their arrangement into smaller regions. Our results provide insight into the length scales over which the interplay between superconductivity and charge order takes place.
000619694 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000619694 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000619694 536__ $$0G:(DE-HGF)2020_Join2-SWEDEN-DESY$$aSWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)$$c2020_Join2-SWEDEN-DESY$$x2
000619694 536__ $$0G:(EU-Grant)884104$$aPSI-FELLOW-III-3i - International, Interdisciplinary & Intersectoral Postdoctoral Fellowships at the Paul Scherrer Institut (884104)$$c884104$$fH2020-MSCA-COFUND-2019$$x3
000619694 542__ $$2Crossref$$i2024-08-10$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0
000619694 542__ $$2Crossref$$i2024-08-10$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0
000619694 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000619694 693__ $$0EXP:(DE-H253)P-P21.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.1-20150101$$aPETRA III$$fPETRA Beamline P21.1$$x0
000619694 7001_ $$0P:(DE-H253)PIP1100020$$aElson, Frank$$b1
000619694 7001_ $$0P:(DE-H253)PIP1097277$$aNocerino, Elisabetta$$b2
000619694 7001_ $$0P:(DE-H253)PIP1096280$$aDas, Debarchan$$b3
000619694 7001_ $$0P:(DE-H253)PIP1025988$$aIvashko, Oleh$$b4
000619694 7001_ $$0P:(DE-H253)PIP1092789$$aBartkowiak, Marek$$b5
000619694 7001_ $$0P:(DE-H253)PIP1086396$$aMånsson, Martin$$b6
000619694 7001_ $$0P:(DE-H253)PIP1090466$$aSassa, Yasmine$$b7
000619694 7001_ $$00000-0002-9223-8483$$aAdachi, Tadashi$$b8
000619694 7001_ $$0P:(DE-H253)PIP1001164$$aZimmermann, Martin v.$$b9
000619694 7001_ $$0P:(DE-H253)PIP1096273$$aLuetkens, Hubertus$$b10
000619694 7001_ $$0P:(DE-H253)PIP1013773$$aChang, Johan$$b11
000619694 7001_ $$0P:(DE-H253)PIP1083807$$aJanoschek, Marc$$b12
000619694 7001_ $$0P:(DE-H253)PIP1096271$$aGuguchia, Zurab$$b13$$eCorresponding author
000619694 7001_ $$0P:(DE-H253)PIP1012665$$aSimutis, Gediminas$$b14$$eCorresponding author
000619694 77318 $$2Crossref$$3journal-article$$a10.1038/s42005-024-01760-0$$bSpringer Science and Business Media LLC$$d2024-08-10$$n1$$p271$$tCommunications Physics$$v7$$x2399-3650$$y2024
000619694 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-024-01760-0$$gVol. 7, no. 1, p. 271$$n1$$p271$$tCommunications Physics$$v7$$x2399-3650$$y2024
000619694 8564_ $$uhttps://bib-pubdb1.desy.de/record/619694/files/s42005-024-01760-0.pdf$$yOpenAccess
000619694 8564_ $$uhttps://bib-pubdb1.desy.de/record/619694/files/s42005-024-01760-0.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000619694 909CO $$ooai:bib-pubdb1.desy.de:619694$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105420$$aExternal Institute$$b0$$kExtern
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100020$$aExternal Institute$$b1$$kExtern
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097277$$aExternal Institute$$b2$$kExtern
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096280$$aExternal Institute$$b3$$kExtern
000619694 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1025988$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1025988$$aExternal Institute$$b4$$kExtern
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092789$$aExternal Institute$$b5$$kExtern
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086396$$aExternal Institute$$b6$$kExtern
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090466$$aExternal Institute$$b7$$kExtern
000619694 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001164$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096273$$aExternal Institute$$b10$$kExtern
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013773$$aExternal Institute$$b11$$kExtern
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083807$$aExternal Institute$$b12$$kExtern
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096271$$aExternal Institute$$b13$$kExtern
000619694 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012665$$aExternal Institute$$b14$$kExtern
000619694 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000619694 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000619694 9141_ $$y2024
000619694 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
000619694 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000619694 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
000619694 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000619694 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000619694 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000619694 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
000619694 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000619694 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000619694 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:49Z
000619694 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:49Z
000619694 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:36:49Z
000619694 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000619694 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000619694 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000619694 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
000619694 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000619694 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
000619694 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000619694 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1
000619694 980__ $$ajournal
000619694 980__ $$aVDB
000619694 980__ $$aUNRESTRICTED
000619694 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000619694 980__ $$aI:(DE-H253)FS-PET-D-20190712
000619694 9801_ $$aFullTexts
000619694 999C5 $$1JM Tranquada$$2Crossref$$9-- missing cx lookup --$$a10.1038/375561a0$$p561 -$$tNat. (Lond.)$$uTranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nat. (Lond.) 375, 561 (1995).$$v375$$y1995
000619694 999C5 $$1JM Tranquada$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4818402$$p114 -$$tAIP Conf. Proc.$$uTranquada, J. M. Spins, stripes, and superconductivity in hole-doped cuprates. AIP Conf. Proc. 1550, 114 (2013).$$v1550$$y2013
000619694 999C5 $$1E Fradkin$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.87.457$$p457 -$$tRev. Mod. Phys.$$uFradkin, E., Kivelson, S. A. & Tranquada, J. M. Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457 (2015).$$v87$$y2015
000619694 999C5 $$1NJ Robinson$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6633/ab31ed$$p126501 -$$tRep. Prog. Phys.$$uRobinson, N. J., Johnson, P. D., Rice, T. M. & Tsvelik, A. M. Anomalies in the pseudogap phase of the cuprates: competing ground states and the role of umklapp scattering. Rep. Prog. Phys. 82, 126501 (2019).$$v82$$y2019
000619694 999C5 $$1JM Tranquada$$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJ.90.111002$$p111002 -$$tJ. Phys. Soc. Jpn.$$uTranquada, J. M., Dean, M. P. M. & Li, Q. Superconductivity from charge order in cuprates. J. Phys. Soc. Jpn. 90, 111002 (2021).$$v90$$y2021
000619694 999C5 $$1S Blanco-Canosa$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.187001$$p187001 -$$tPhys. Rev. Lett.$$uBlanco-Canosa, S. et al. Correlations in YBa2Cu3O6+δ superconductors probed by resonant X-ray scattering: Evidence for three competing phases. Phys. Rev. Lett. 110, 187001 (2013).$$v110$$y2013
000619694 999C5 $$1P Corboz$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.046402$$p046402 -$$tPhys. Rev. Lett.$$uCorboz, P., Rice, T. M. & Troyer, M. Competing states in the t-J model: Uniform d-wave state versus stripe state. Phys. Rev. Lett. 113, 046402 (2014).$$v113$$y2014
000619694 999C5 $$1DF Agterberg$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-031119-050711$$p231 -$$tAnnu. Rev. Condens. Matter Phys.$$uAgterberg, D. F. et al. The physics of pair-density waves: Cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231 (2020).$$v11$$y2020
000619694 999C5 $$1M Qin$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-090921-033948$$p275 -$$tAnnu. Rev. Condens. Matter Phys.$$uQin, M., Schäfer, T., Andergassen, S., Corboz, P. & Gull, E. The Hubbard model: A computational perspective. Annu. Rev. Condens. Matter Phys. 13, 275 (2022).$$v13$$y2022
000619694 999C5 $$1H-H Kim$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aat4708$$p1040 -$$tScience$$uKim, H.-H. et al. Uniaxial pressure control of competing orders in a high-temperature superconductor. Science 362, 1040 (2018).$$v362$$y2018
000619694 999C5 $$1H-H Kim$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.037002$$p037002 -$$tPhys. Rev. Lett.$$uKim, H.-H. et al. Charge density waves in YBa2Cu3O6.67 probed by resonant X-ray scattering under uniaxial compression. Phys. Rev. Lett. 126, 037002 (2021).$$v126$$y2021
000619694 999C5 $$1I Vinograd$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-024-47540-w$$tNat. Commun.$$uVinograd, I. et al. Using strain to uncover the interplay between two- and three-dimensional charge density waves in high-temperature superconducting YBa2Cu3Oy. Nat. Commun. 15, 3277 https://www.nature.com/articles/s41467-024-47540-w (2024).$$v15$$y2024
000619694 999C5 $$1J Choi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.128.207002$$p207002 -$$tPhys. Rev. Lett.$$uChoi, J. et al. Unveiling unequivocal charge stripe order in a prototypical cuprate superconductor. Phys. Rev. Lett. 128, 207002 (2022).$$v128$$y2022
000619694 999C5 $$1Q Wang$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-29465-4$$tNat. Commun.$$uWang, Q. et al. Uniaxial pressure induced stripe order rotation in La1.88Sr0.12CuO4. Nat. Commun. 13, 1795 (2022). ISSN 2041-1723.$$v13$$y2022
000619694 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s42005-022-01061-4$$uSimutis G. et al. Single-domain stripe order in a high-temperature superconductor Commun. Phys. 5, 296, ISSN 2399 3650 https://doi.org/10.1038/s42005-022-01061-4 (2022).
000619694 999C5 $$1M Hücker$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.104506$$p104506 -$$tPhys. Rev. B$$uHücker, M. et al. Stripe order in superconducting La2-xBaxCuO4 (0.095≤x≤0.155). Phys. Rev. B 83, 104506 (2011).$$v83$$y2011
000619694 999C5 $$1Z Guguchia$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2303423120$$pe2303423120 -$$tPNAS$$uGuguchia, Z. et al. Designing the stripe-ordered cuprate phase diagram through uniaxial-stress. PNAS 121, e2303423120 (2023).$$v121$$y2023
000619694 999C5 $$1Z Guguchia$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.097005$$p097005 -$$tPhys. Rev. Lett.$$uGuguchia, Z. et al. Using uniaxial stress to probe the relationship between competing superconducting states in a cuprate with spin-stripe order. Phys. Rev. Lett. 125, 097005 (2020).$$v125$$y2020
000619694 999C5 $$1AR Moodenbaugh$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.38.4596$$p4596 -$$tPhys. Rev. B$$uMoodenbaugh, A. R., Xu, Y., Suenaga, M., Folkerts, T. J. & Shelton, R. N. Superconducting properties of La2−xBaxCuO4. Phys. Rev. B 38, 4596 (1988).$$v38$$y1988
000619694 999C5 $$1JM Tranquada$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.174529$$p174529 -$$tPhys. Rev. B$$uTranquada, J. M. et al. Evidence for unusual superconducting correlations coexisting with stripe order in La1.875Ba0.125CuO4. Phys. Rev. B 78, 174529 (2008).$$v78$$y2008
000619694 999C5 $$1JD Axe$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.62.2751$$p2751 -$$tPhys. Rev. Lett.$$uAxe, J. D. et al. Structural phase transformations and superconductivity in La2−xBaxCuO4. Phys. Rev. Lett. 62, 2751 (1989).$$v62$$y1989
000619694 999C5 $$1A Himeda$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.117001$$p117001 -$$tPhys. Rev. Lett.$$uHimeda, A., Kato, T. & Ogata, M. Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional t–t’–J model. Phys. Rev. Lett. 88, 117001 (2002).$$v88$$y2002
000619694 999C5 $$1M Fujita$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.104517$$p104517 -$$tPhys. Rev. B$$uFujita, M., Goka, H., Yamada, K., Tranquada, J. M. & Regnault, L. P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.050CuO4. Phys. Rev. B 70, 104517 (2004).$$v70$$y2004
000619694 999C5 $$1V Thampy$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.100510$$p100510 -$$tPhys. Rev. B$$uThampy, V. et al. Rotated stripe order and its competition with superconductivity in La1.88Sr0.12CuO4. Phys. Rev. B 90, 100510 (2014).$$v90$$y2014
000619694 999C5 $$1H Miao$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1708549114$$p12430 -$$tProc. Natl Acad. Sci.$$uMiao, H. et al. High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking. Proc. Natl Acad. Sci. 114, 12430 (2017).$$v114$$y2017
000619694 999C5 $$1Q Wang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.187002$$p187002 -$$tPhys. Rev. Lett.$$uWang, Q. et al. High-temperature charge-stripe correlations in La1.675Eu0.2Sr0.125CuO4. Phys. Rev. Lett. 124, 187002 (2020).$$v124$$y2020
000619694 999C5 $$1G Ghiringhelli$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1223532$$p821 -$$tScience$$uGhiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x. Science 337, 821–825 (2012).$$v337$$y2012
000619694 999C5 $$1R Comin$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1242996$$p390 -$$tScience$$uComin, R. et al. Charge order driven by fermi-arc instability in Bi2Sr2−xLaxCuO6+δ. Science 343, 390–392 (2014).$$v343$$y2014
000619694 999C5 $$1EH da Silva Neto$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1256441$$p282 -$$tScience$$uda Silva Neto, E. H. et al. Charge ordering in the electron-doped superconductor Nd2–xCexCuO4. Science 347, 282–285 (2015).$$v347$$y2015
000619694 999C5 $$1W Tabis$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.134510$$p134510 -$$tPhys. Rev. B$$uTabis, W. et al. Synchrotron x-ray scattering study of charge-density-wave order in HgBa2CuO4+δ. Phys. Rev. B 96, 134510 (2017).$$v96$$y2017
000619694 999C5 $$1M Bluschke$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.100.035129$$p035129 -$$tPhys. Rev. B$$uBluschke, M. et al. Adiabatic variation of the charge density wave phase diagram in the 123 cuprate (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy. Phys. Rev. B 100, 035129 (2019).$$v100$$y2019
000619694 999C5 $$1A Ruiz$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-33607-z$$tNat. Commun.$$uRuiz, A. et al. Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ. Nat. Commun. 13, 6197 https://www.nature.com/articles/s41467-022-33607-z (2022).$$v13$$y2022
000619694 999C5 $$1R Frison$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.105.224113$$p224113 -$$tPhys. Rev. B$$uFrison, R. et al. Crystal symmetry of stripe-ordered La1.88Sr0.12CuO4. Phys. Rev. B 105, 224113 (2022).$$v105$$y2022
000619694 999C5 $$1MK Crawford$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.7749$$p7749 -$$tPhys. Rev. B$$uCrawford, M. K. et al. Lattice instabilities and the effect of copper-oxygen-sheet distortions on superconductivity in doped La2CuO4. Phys. Rev. B 44, 7749 (1991).$$v44$$y1991
000619694 999C5 $$1S Arumugam$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.247001$$p247001 -$$tPhys. Rev. Lett.$$uArumugam, S. et al. Competition of static stripe and superconducting phases in La1.48Nd0.4Sr0.12CuO4 controlled by pressure. Phys. Rev. Lett. 88, 247001 (2002).$$v88$$y2002
000619694 999C5 $$1TJ Boyle$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.3.L022004$$pL022004 -$$tPhys. Rev. Res.$$uBoyle, T. J. et al. Large response of charge stripes to uniaxial stress in La1.475Nd0.4Sr0.125CuO4. Phys. Rev. Res. 3, L022004 (2021).$$v3$$y2021
000619694 999C5 $$1NK Gupta$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.108.L121113$$pL121113 -$$tPhys. Rev. B$$uGupta, N. K. et al. Tuning charge density wave order and structure via uniaxial stress in a stripe-ordered cuprate superconductor. Phys. Rev. B 108, L121113 (2023).$$v108$$y2023
000619694 999C5 $$1ME Kamminga$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.107.144506$$p144506 -$$tPhys. Rev. B$$uKamminga, M. E. et al. Evolution of magnetic stripes under uniaxial stress in La1.885Ba0.115CuO4 studied by neutron scattering. Phys. Rev. B 107, 144506 (2023).$$v107$$y2023
000619694 999C5 $$1G Simutis$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0114892$$p013906 -$$tRev. Sci. Instrum.$$uSimutis, G. et al. In situ uniaxial pressure cell for x-ray and neutron scattering experiments. Rev. Sci. Instrum. 94, 013906 (2023).$$v94$$y2023
000619694 999C5 $$1J Sears$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.107.115125$$p115125 -$$tPhys. Rev. B$$uSears, J. et al. Structure of charge density waves in La1.875Ba0.125CuO4. Phys. Rev. B 107, 115125 (2023).$$v107$$y2023
000619694 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s42005-024-01760-0$$uThomarat, L. et al. Supplementary Information to “Tuning of charge order by uniaxial stress in a cuprate superconductor”. Commun. Phys. (2024).
000619694 999C5 $$1I Jakovac$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.108.205113$$p205113 -$$tPhys. Rev. B$$uJakovac, I. et al. Uniaxial stress study of spin and charge stripes in La1.875Ba0.125CuO4 by 139La NMR and 63Cu NQR. Phys. Rev. B 108, 205113 (2023).$$v108$$y2023
000619694 999C5 $$1TP Croft$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.224513$$p224513 -$$tPhys. Rev. B$$uCroft, T. P., Lester, C., Senn, M. S., Bombardi, A. & Hayden, S. M. Charge density wave fluctuations in La2−xSrxCuO4 and their competition with superconductivity. Phys. Rev. B 89, 224513 (2014).$$v89$$y2014
000619694 999C5 $$1J Chang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.104525$$p104525 -$$tPhys. Rev. B$$uChang, J. et al. Tuning competing orders in La2−xSrxCuO4 cuprate superconductors by the application of an external magnetic field. Phys. Rev. B 78, 104525 (2008).$$v78$$y2008
000619694 999C5 $$1M Hücker$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.057004$$p057004 -$$tPhys. Rev. Lett.$$uHücker, M. et al. Spontaneous symmetry breaking by charge stripes in the high pressure phase of superconducting La1.875Ba0.125CuO4. Phys. Rev. Lett. 104, 057004 (2010).$$v104$$y2010
000619694 999C5 $$1HE Mohottala$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1633$$p377 -$$tNat. Mater.$$uMohottala, H. E. et al. Phase separation in superoxygenated La2-xSrxCuO4+y. Nat. Mater. 5, 377–382, https://www.nature.com/articles/nmat1633 (2006).$$v5$$y2006
000619694 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/arXiv.1404.3192$$uChristensen, N. B. et al. Bulk charge stripe order competing with superconductivity in La2-xSrxCuO4 (x=0.12), arXiv:1404.3192. https://doi.org/10.48550/arXiv.1404.3192 (2014).
000619694 999C5 $$1XM Chen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-019-09433-1$$tNat. Commun.$$uChen, X. M. et al. Charge density wave memory in a cuprate superconductor. Nat. Commun. 10, 1435 (2019). ISSN 2041-1723.$$v10$$y2019
000619694 999C5 $$1R Comin$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1258399$$p1335 -$$tScience$$uComin, R. et al. Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6+y. Science 347, 1335–1339 (2015).$$v347$$y2015
000619694 999C5 $$1M Hücker$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.014501$$p014501 -$$tPhys. Rev. B$$uHücker, M. et al. Enhanced charge stripe order of superconducting La2−xBaxCuO4 in a magnetic field. Phys. Rev. B 87, 014501 (2013).$$v87$$y2013
000619694 999C5 $$1M Leroux$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1817134116$$p10691 -$$tProc. Natl Acad. Sci.$$uLeroux, M. et al. Disorder raises the critical temperature of a cuprate superconductor. Proc. Natl Acad. Sci. 116, 10691 (2019).$$v116$$y2019
000619694 999C5 $$1S Wandel$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abd7213$$p860 -$$tScience$$uWandel, S. et al. Enhanced charge density wave coherence in a light-quenched, high-temperature superconductor. Science 376, 860–864 (2022).$$v376$$y2022
000619694 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.21203/rs.3.rs-3514922/v1$$uLee, J.-S. et al. Pair-density wave signature observed by x-ray scattering in La-based high-Tc cuprates arXiv:2310.19907 https://arxiv.org/abs/2310.19907 (2023).
000619694 999C5 $$1T Adachi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.144524$$p144524 -$$tPhys. Rev. B$$uAdachi, T., Noji, T. & Koike, Y. Crystal growth, transport properties, and crystal structure of the single-crystal La2−xBaxCuO4 (x=0.11). Phys. Rev. B 64, 144524 (2001).$$v64$$y2001