000619666 001__ 619666
000619666 005__ 20250715173653.0
000619666 0247_ $$2doi$$a10.22323/1.453.0362
000619666 0247_ $$2INSPIRETeX$$aCatumba:2023srt
000619666 0247_ $$2inspire$$ainspire:2734679
000619666 0247_ $$2arXiv$$aarXiv:2312.05537
000619666 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-07805
000619666 0247_ $$2openalex$$aopenalex:W4390268843
000619666 037__ $$aPUBDB-2024-07805
000619666 041__ $$aEnglish
000619666 088__ $$2arXiv$$aarXiv:2312.05537
000619666 1001_ $$0P:(DE-HGF)0$$aCatumba, Guilherme$$b0
000619666 1112_ $$a40th International Symposium on Lattice Field Theory$$cBatavia$$d2023-07-30 - 2023-08-05$$gLattice 2023$$wUnited States
000619666 245__ $$aStudy of 3-dimensional SU(2) gauge theory with adjoint Higgs as a model for cuprate superconductors
000619666 260__ $$bSissa Medialab Trieste, Italy$$c2024
000619666 300__ $$a7
000619666 3367_ $$2ORCID$$aCONFERENCE_PAPER
000619666 3367_ $$033$$2EndNote$$aConference Paper
000619666 3367_ $$2BibTeX$$aINPROCEEDINGS
000619666 3367_ $$2DRIVER$$aconferenceObject
000619666 3367_ $$2DataCite$$aOutput Types/Conference Paper
000619666 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1734430591_1526682
000619666 4900_ $$2Author
000619666 500__ $$a7 pages, 4 figures, Proceedings of the 40th International Symposium on Lattice Field Theory (LATTICE2023), July 31st - August 4th, 2023, Fermi National Accelerator Laboratory
000619666 520__ $$aWe study a 3-dimensional SU(2) gauge theory with 4 Higgs fields which transform under the adjointrepresentation of the gauge group, that has been recently proposed by Sachdev et al. to explain thephysics of cuprate superconductors near optimal doping. The symmetric confining phase of thetheory corresponds to the usual Fermi-liquid phase while the broken (Higgs) phase is associatedwith the interesting pseudogap phase of cuprates. We employ the Hybrid Monte-Carlo algorithmto study the phase diagram of the theory. We find the existence of a variety of broken phases inqualitative accordance with earlier mean-field predictions and discuss their role in cuprates. Inaddition, we investigate the behavior of Polyakov loop to probe the confinement/deconfinementphase transition, and find that the Higgs phase hosts a stable deconfining phase consistent withprevious studies.
000619666 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000619666 536__ $$0G:(EU-Grant)101087126$$aQUEST - QUantum computing for Excellence in Science and Technology (101087126)$$c101087126$$fHORIZON-WIDERA-2022-TALENTS-01$$x1
000619666 588__ $$aDataset connected to CrossRef Conference, INSPIRE
000619666 650_7 $$2INSPIRE$$agauge field theory: SU(2)
000619666 650_7 $$2INSPIRE$$acritical phenomena: deconfinement
000619666 650_7 $$2INSPIRE$$aMonte Carlo: hybrid
000619666 650_7 $$2INSPIRE$$aconfinement
000619666 650_7 $$2INSPIRE$$asuperconductivity
000619666 650_7 $$2INSPIRE$$anumerical calculations
000619666 650_7 $$2INSPIRE$$astability
000619666 650_7 $$2INSPIRE$$aPolyakov loop
000619666 650_7 $$2INSPIRE$$aFermi liquid
000619666 650_7 $$2INSPIRE$$aHiggs particle
000619666 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000619666 7001_ $$0P:(DE-HGF)0$$aHiraguchi, Atsuki$$b1
000619666 7001_ $$0P:(DE-HGF)0$$aHou, George W.-S.$$b2
000619666 7001_ $$0P:(DE-H253)PIP1003636$$aJansen, Karl$$b3$$udesy
000619666 7001_ $$0P:(DE-HGF)0$$aKao, Ying-Jer$$b4
000619666 7001_ $$aLin, C.-J. David$$b5
000619666 7001_ $$0P:(DE-HGF)0$$aRamos, Alberto$$b6
000619666 7001_ $$0P:(DE-HGF)0$$aSarkar, Mugdha$$b7$$eCorresponding author
000619666 773__ $$a10.22323/1.453.0362$$p362$$v(LATTICE2023)
000619666 8564_ $$uhttps://bib-pubdb1.desy.de/record/619666/files/LATTICE2023_362.pdf$$yOpenAccess
000619666 8564_ $$uhttps://bib-pubdb1.desy.de/record/619666/files/LATTICE2023_362.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000619666 909CO $$ooai:bib-pubdb1.desy.de:619666$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000619666 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003636$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000619666 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000619666 9141_ $$y2024
000619666 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000619666 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000619666 9201_ $$0I:(DE-H253)CQTA-20221102$$kCQTA$$lCentre f. Quantum Techno. a. Application$$x0
000619666 9201_ $$0I:(DE-H253)Z_ZPPT-20210408$$kZ_ZPPT$$lZeuthen Particle PhysicsTheory$$x1
000619666 980__ $$acontrib
000619666 980__ $$aVDB
000619666 980__ $$aUNRESTRICTED
000619666 980__ $$aI:(DE-H253)CQTA-20221102
000619666 980__ $$aI:(DE-H253)Z_ZPPT-20210408
000619666 9801_ $$aFullTexts