000619397 001__ 619397
000619397 005__ 20250801212045.0
000619397 0247_ $$2doi$$a10.1007/JHEP06(2024)156
000619397 0247_ $$2ISSN$$a1126-6708
000619397 0247_ $$2ISSN$$a1029-8479
000619397 0247_ $$2ISSN$$a1127-2236
000619397 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-07602
000619397 0247_ $$2arXiv$$aarXiv:2402.09361
000619397 0247_ $$2WOS$$aWOS:001255487500002
000619397 0247_ $$2openalex$$aopenalex:W4400100130
000619397 037__ $$aPUBDB-2024-07602
000619397 041__ $$aEnglish
000619397 082__ $$a530
000619397 088__ $$2DESY$$aDESY-24-019
000619397 088__ $$2arXiv$$aarXiv:2402.09361
000619397 088__ $$2CERN$$aCERN-TH-2024-022
000619397 088__ $$2Other$$aHU-EP-24/05
000619397 088__ $$2Other$$aUMN-TH-4313/24
000619397 1001_ $$00000-0002-7104-1753$$aBedi, Ravneet$$b0
000619397 245__ $$aSmall instanton-induced flavor invariants and the axion potential
000619397 260__ $$a[Trieste]$$bSISSA$$c2024
000619397 3367_ $$2DRIVER$$aarticle
000619397 3367_ $$2DataCite$$aOutput Types/Journal article
000619397 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754052712_3349145
000619397 3367_ $$2BibTeX$$aARTICLE
000619397 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000619397 3367_ $$00$$2EndNote$$aJournal Article
000619397 500__ $$a49 pages, 4 figures
000619397 520__ $$aSmall instantons which increase the axion mass due to an appropriate modification of QCD at a UV scale $\Lambda_{\rm SI}$, can also enhance the effect of CP-violating operators to shift the axion potential minimum by an amount, $\theta_{\rm ind}$, proportional to the flavorful couplings in the SMEFT. Since physical observables must be flavor basis independent, we construct a basis of determinant-like flavor invariants that arise from instanton calculations containing the effects of dimension-six CP-odd operators at the scale $\require{cancel}\Lambda_{\cancel{\rm CP}}$. This new basis provides a more reliable estimate of the shift $\theta_{\rm ind}$, that is severely constrained by neutron electric dipole moment experiments. In particular, for the case of four-quark, semi-leptonic and gluon dipole operators, these invariants are then used to provide improved limits on the ratio of scales $\require{cancel}\Lambda_{\rm SI}/\Lambda_{\cancel{\rm CP}}$ for different flavor scenarios. The CP-odd flavor invariants also provide a classification of the leading effects from Wilson coefficients, and as an example, we show that a semi-leptonic four-fermion operator is subdominant compared to the four-quark operators. More generally, the flavor invariants, together with an instanton NDA, can be used to more accurately estimate small instanton effects in the axion potential that arise from any SMEFT operator.
000619397 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000619397 536__ $$0G:(GEPRIS)390833306$$aDFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)$$c390833306$$x1
000619397 536__ $$0G:(EU-Grant)101086085$$aASYMMETRY - Essential Asymmetries of Nature (101086085)$$c101086085$$fHORIZON-MSCA-2021-SE-01$$x2
000619397 542__ $$2Crossref$$i2024-06-24$$uhttps://creativecommons.org/licenses/by/4.0
000619397 542__ $$2Crossref$$i2024-06-24$$uhttps://creativecommons.org/licenses/by/4.0
000619397 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000619397 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000619397 7001_ $$00000-0002-8489-1116$$aGherghetta, Tony$$b1
000619397 7001_ $$0P:(DE-H253)PIP1023796$$aGrojean, Christophe$$b2
000619397 7001_ $$0P:(DE-H253)PIP1103603$$aGuedes, Guilherme$$b3$$eCorresponding author
000619397 7001_ $$0P:(DE-H253)PIP1098464$$aKley, Jonathan$$b4
000619397 7001_ $$0P:(DE-H253)PIP1103658$$aVuong, Pham Ngoc Hoa$$b5
000619397 77318 $$2Crossref$$3journal-article$$a10.1007/jhep06(2024)156$$bSpringer Science and Business Media LLC$$d2024-06-24$$n6$$p156$$tJournal of High Energy Physics$$v2024$$x1029-8479$$y2024
000619397 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP06(2024)156$$gVol. 2024, no. 6, p. 156$$n6$$p156$$tJournal of high energy physics$$v2024$$x1029-8479$$y2024
000619397 7870_ $$0PUBDB-2024-00662$$aBedi, Ravneet et.al.$$d2024$$iIsParent$$rDESY-24-019 ; arXiv:2402.09361 ; CERN-TH-2024-022 ; HU-EP-24/05 ; UMN-TH-4313/24$$tSmall instanton-induced flavor invariants and the axion potential
000619397 8564_ $$uhttps://bib-pubdb1.desy.de/record/619397/files/JHEP06%282024%29156.pdf$$yOpenAccess
000619397 8564_ $$uhttps://bib-pubdb1.desy.de/record/619397/files/JHEP06%282024%29156.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000619397 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-27$$eAPC$$jFlatrate$$lSCOAP3
000619397 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-27$$eAPC$$jStorniert$$lSCOAP3$$zDFG OAPK (Projekt)
000619397 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-27$$eAPC$$jZahlung erfolgt$$lSCOAP3$$zDFG OAPK (Projekt)
000619397 909CO $$ooai:bib-pubdb1.desy.de:619397$$pdnbdelivery$$popenCost$$popenaire$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access
000619397 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023796$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000619397 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1103603$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000619397 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098464$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000619397 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098464$$aExternal Institute$$b4$$kExtern
000619397 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1103658$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000619397 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000619397 9141_ $$y2024
000619397 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000619397 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000619397 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000619397 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000619397 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000619397 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000619397 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000619397 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:11Z
000619397 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:11Z
000619397 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000619397 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000619397 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-10-24
000619397 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:11Z
000619397 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-16$$wger
000619397 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000619397 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000619397 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000619397 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000619397 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000619397 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000619397 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000619397 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000619397 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000619397 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000619397 980__ $$ajournal
000619397 980__ $$aVDB
000619397 980__ $$aI:(DE-H253)T-20120731
000619397 980__ $$aAPC
000619397 980__ $$aUNRESTRICTED
000619397 9801_ $$aAPC
000619397 9801_ $$aFullTexts
000619397 999C5 $$2Crossref$$uC. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys. Rev. Lett. 124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(79)90297-9$$uJ.R. Ellis and M.K. Gaillard, Strong and Weak CP Violation, Nucl. Phys. B 150 (1979) 141 [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(94)90419-7$$uI.B. Khriplovich and A.I. Vainshtein, Infinite renormalization of Theta term and Jarlskog invariant for CP violation, Nucl. Phys. B 414 (1994) 27 [hep-ph/9308334] [INSPIRE].
000619397 999C5 $$1IB Khriplovich$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(86)90245-5$$p193 -$$tPhys. Lett. B$$uI.B. Khriplovich, Quark Electric Dipole Moment and Induced θ Term in the Kobayashi-Maskawa Model, Phys. Lett. B 173 (1986) 193 [INSPIRE].$$v173$$y1986
000619397 999C5 $$1IIY Bigi$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(91)90339-Y$$p321 -$$tNucl. Phys. B$$uI.I.Y. Bigi and N.G. Uraltsev, Induced Multi-Gluon Couplings and the Neutron Electric Dipole Moment, Nucl. Phys. B 353 (1991) 321 [INSPIRE].$$v353$$y1991
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.38.1440$$uR.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
000619397 999C5 $$1S Weinberg$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.40.223$$p223 -$$tPhys. Rev. Lett.$$uS. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].$$v40$$y1978
000619397 999C5 $$1F Wilczek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.40.279$$p279 -$$tPhys. Rev. Lett.$$uF. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].$$v40$$y1978
000619397 999C5 $$1E Witten$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(84)90422-2$$p351 -$$tPhys. Lett. B$$uE. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149 (1984) 351 [INSPIRE].$$v149$$y1984
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(92)91928-3$$uL. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284 (1992) 77 [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.101602$$uK.-W. Choi, A QCD axion from higher dimensional gauge field, Phys. Rev. Lett. 92 (2004) 101602 [hep-ph/0308024] [INSPIRE].
000619397 999C5 $$1B Lillard$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2018)199$$p199 -$$tJHEP$$uB. Lillard and T.M.P. Tait, A High Quality Composite Axion, JHEP 11 (2018) 199 [arXiv:1811.03089] [INSPIRE].$$v11$$y2018
000619397 999C5 $$1MB Gavela$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-7046-3$$p542 -$$tEur. Phys. J. C$$uM.B. Gavela, M. Ibe, P. Quílez and T.T. Yanagida, Automatic Peccei-Quinn symmetry, Eur. Phys. J. C 79 (2019) 542 [arXiv:1812.08174] [INSPIRE].$$v79$$y2019
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.221801$$uA. Hook, S. Kumar, Z. Liu and R. Sundrum, High Quality QCD Axion and the LHC, Phys. Rev. Lett. 124 (2020) 221801 [arXiv:1911.12364] [INSPIRE].
000619397 999C5 $$1R Contino$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2022)180$$p180 -$$tJHEP$$uR. Contino, A. Podo and F. Revello, Chiral models of composite axions and accidental Peccei-Quinn symmetry, JHEP 04 (2022) 180 [arXiv:2112.09635] [INSPIRE].$$v04$$y2022
000619397 999C5 $$1P Cox$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2023)180$$p180 -$$tJHEP$$uP. Cox, T. Gherghetta and A. Paul, A common origin for the QCD axion and sterile neutrinos from SU(5) strong dynamics, JHEP 12 (2023) 180 [arXiv:2310.08557] [INSPIRE].$$v12$$y2023
000619397 999C5 $$1M Dine$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(86)90043-X$$p109 -$$tNucl. Phys. B$$uM. Dine and N. Seiberg, String Theory and the Strong CP Problem, Nucl. Phys. B 273 (1986) 109 [INSPIRE].$$v273$$y1986
000619397 999C5 $$2Crossref$$uM. Dine, The Problem of Axion Quality: A Low Energy Effective Action Perspective, arXiv:2207.01068 [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.015030$$uR.S. Bedi, T. Gherghetta and M. Pospelov, Enhanced EDMs from small instantons, Phys. Rev. D 106 (2022) 015030 [arXiv:2205.07948] [INSPIRE].
000619397 999C5 $$1S Dimopoulos$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(79)91233-4$$p435 -$$tPhys. Lett. B$$uS. Dimopoulos, A Solution of the Strong CP Problem in Models With Scalars, Phys. Lett. B 84 (1979) 435 [INSPIRE].$$v84$$y1979
000619397 999C5 $$1B Holdom$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(82)90228-0$$p397 -$$tNucl. Phys. B$$uB. Holdom and M.E. Peskin, Raising the Axion Mass, Nucl. Phys. B 208 (1982) 397 [INSPIRE].$$v208$$y1982
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(85)90371-5$$uB. Holdom, Strong QCD at High-energies and a Heavy Axion, Phys. Lett. B 154 (1985) 316 [Erratum ibid. 156 (1985) 452] [INSPIRE].
000619397 999C5 $$1JM Flynn$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(87)90089-7$$p731 -$$tNucl. Phys. B$$uJ.M. Flynn and L. Randall, A Computation of the Small Instanton Contribution to the Axion Potential, Nucl. Phys. B 293 (1987) 731 [INSPIRE].$$v293$$y1987
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1134/1.567390$$uV.A. Rubakov, Grand unification and heavy axion, JETP Lett. 65 (1997) 621 [hep-ph/9703409] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.015021$$uH. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev. D 92 (2015) 015021 [arXiv:1504.06084] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.115010$$uT. Gherghetta, N. Nagata and M. Shifman, A Visible QCD Axion from an Enlarged Color Group, Phys. Rev. D 93 (2016) 115010 [arXiv:1604.01127] [INSPIRE].
000619397 999C5 $$1P Agrawal$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2018)029$$p029 -$$tJHEP$$uP. Agrawal and K. Howe, Factoring the Strong CP Problem, JHEP 12 (2018) 029 [arXiv:1710.04213] [INSPIRE].$$v12$$y2018
000619397 999C5 $$1C Csáki$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2020)031$$p031 -$$tJHEP$$uC. Csáki, M. Ruhdorfer and Y. Shirman, UV Sensitivity of the Axion Mass from Instantons in Partially Broken Gauge Groups, JHEP 04 (2020) 031 [arXiv:1912.02197] [INSPIRE].$$v04$$y2020
000619397 999C5 $$1T Gherghetta$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2020)094$$p094 -$$tJHEP$$uT. Gherghetta and M.D. Nguyen, A Composite Higgs with a Heavy Composite Axion, JHEP 12 (2020) 094 [arXiv:2007.10875] [INSPIRE].$$v12$$y2020
000619397 999C5 $$1R Kitano$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2021)078$$p078 -$$tJHEP$$uR. Kitano and W. Yin, Strong CP problem and axion dark matter with small instantons, JHEP 07 (2021) 078 [arXiv:2103.08598] [INSPIRE].$$v07$$y2021
000619397 999C5 $$1M Demirtas$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2023)092$$p092 -$$tJHEP$$uM. Demirtas et al., PQ axiverse, JHEP 06 (2023) 092 [arXiv:2112.04503] [INSPIRE].$$v06$$y2023
000619397 999C5 $$1C Csáki$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2024)074$$p074 -$$tJHEP$$uC. Csáki, R.T. D’Agnolo, E. Kuflik and M. Ruhdorfer, Instanton NDA and applications to axion models, JHEP 04 (2024) 074 [arXiv:2311.09285] [INSPIRE].$$v04$$y2024
000619397 999C5 $$1J de Blas$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2018)109$$p109 -$$tJHEP$$uJ. de Blas, J.C. Criado, M. Perez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP 03 (2018) 109 [arXiv:1711.10391] [INSPIRE].$$v03$$y2018
000619397 999C5 $$1G Guedes$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.15.4.143$$p143 -$$tSciPost Phys.$$uG. Guedes, P. Olgoso and J. Santiago, Towards the one loop IR/UV dictionary in the SMEFT: One loop generated operators from new scalars and fermions, SciPost Phys. 15 (2023) 143 [arXiv:2303.16965] [INSPIRE].$$v15$$y2023
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.50.774$$uG.R. Farrar and M.E. Shaposhnikov, Baryon asymmetry of the universe in the standard electroweak theory, Phys. Rev. D 50 (1994) 774 [hep-ph/9305275] [INSPIRE].
000619397 999C5 $$1C Smith$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2017.09.013$$p417 -$$tNucl. Phys. B$$uC. Smith and S. Touati, Electric dipole moments with and beyond flavor invariants, Nucl. Phys. B 924 (2017) 417 [arXiv:1707.06805] [INSPIRE].$$v924$$y2017
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.053004$$uP.B. Denton and S.J. Parke, Simple and Precise Factorization of the Jarlskog Invariant for Neutrino Oscillations in Matter, Phys. Rev. D 100 (2019) 053004 [arXiv:1902.07185] [INSPIRE].
000619397 999C5 $$1B Yu$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2022)017$$p017 -$$tJHEP$$uB. Yu and S. Zhou, CP violation and flavor invariants in the seesaw effective field theory, JHEP 08 (2022) 017 [arXiv:2203.10121] [INSPIRE].$$v08$$y2022
000619397 999C5 $$1Q Bonnefoy$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2022)032$$p032 -$$tJHEP$$uQ. Bonnefoy, E. Gendy, C. Grojean and J.T. Ruderman, Beyond Jarlskog: 699 invariants for CP violation in SMEFT, JHEP 08 (2022) 032 [arXiv:2112.03889] [INSPIRE].$$v08$$y2022
000619397 999C5 $$1Q Bonnefoy$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2023)141$$p141 -$$tJHEP$$uQ. Bonnefoy, E. Gendy, C. Grojean and J.T. Ruderman, Opportunistic CP violation, JHEP 06 (2023) 141 [arXiv:2302.07288] [INSPIRE].$$v06$$y2023
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.55.1039$$uC. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].
000619397 999C5 $$1C Jarlskog$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01565198$$p491 -$$tZ. Phys. C$$uC. Jarlskog, A Basis Independent Formulation of the Connection Between Quark Mass Matrices, CP Violation and Experiment, Z. Phys. C 29 (1985) 491 [INSPIRE].$$v29$$y1985
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(86)90659-3$$uJ. Bernabeu, G.C. Branco and M. Gronau, CP Restrictions on Quark Mass Matrices, Phys. Lett. B 169 (1986) 243 [INSPIRE].
000619397 999C5 $$1DJE Marsh$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2016.06.005$$p1 -$$tPhys. Rept.$$uD.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].$$v643$$y2016
000619397 999C5 $$1L Di Luzio$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2020.06.002$$p1 -$$tPhys. Rept.$$uL. Di Luzio, M. Giannotti, E. Nardi and L. Visinelli, The landscape of QCD axion models, Phys. Rept. 870 (2020) 1 [arXiv:2003.01100] [INSPIRE].$$v870$$y2020
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.14.3432$$uG. ’t Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. 18 (1978) 2199] [INSPIRE].
000619397 999C5 $$1B Grzadkowski$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2010)085$$p085 -$$tJHEP$$uB. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].$$v10$$y2010
000619397 999C5 $$1IIY Bigi$$2Crossref$$uI.I.Y. Bigi and N.G. Uraltsev, Effective gluon operators and the dipole moment of the neutron, Sov. Phys. JETP 73 (1991) 198 [INSPIRE].$$y1991
000619397 999C5 $$1E Witten$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(79)90031-2$$p269 -$$tNucl. Phys. B$$uE. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].$$v156$$y1979
000619397 999C5 $$1MA Shifman$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(80)90209-6$$p493 -$$tNucl. Phys. B$$uM.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].$$v166$$y1980
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.58.097703$$uM. Pospelov, CP odd interaction of axion with matter, Phys. Rev. D 58 (1998) 097703 [hep-ph/9707431] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.aop.2005.04.002$$uM. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].
000619397 999C5 $$1HM Georgi$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(81)90433-8$$p409 -$$tNucl. Phys. B$$uH.M. Georgi, L.J. Hall and M.B. Wise, Grand Unified Models With an Automatic Peccei-Quinn Symmetry, Nucl. Phys. B 192 (1981) 409 [INSPIRE].$$v192$$y1981
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(92)90491-L$$uR. Holman et al., Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].
000619397 999C5 $$1M Kamionkowski$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(92)90492-M$$p137 -$$tPhys. Lett. B$$uM. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].$$v282$$y1992
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.46.539$$uS.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].
000619397 999C5 $$1S Ghigna$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(92)90019-Z$$p278 -$$tPhys. Lett. B$$uS. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B 283 (1992) 278 [INSPIRE].$$v283$$y1992
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.111803$$uQ. Bonnefoy, C. Grojean and J. Kley, Shift-Invariant Orders of an Axionlike Particle, Phys. Rev. Lett. 130 (2023) 111803 [arXiv:2206.04182] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.035023$$uQ. Bonnefoy, Heavy fields and the axion quality problem, Phys. Rev. D 108 (2023) 035023 [arXiv:2212.00102] [INSPIRE].
000619397 999C5 $$1CG Callan Jr$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.17.2717$$p2717 -$$tPhys. Rev. D$$uC.G. Callan Jr., R.F. Dashen and D.J. Gross, Toward a Theory of the Strong Interactions, Phys. Rev. D 17 (1978) 2717 [INSPIRE].$$v17$$y1978
000619397 999C5 $$1T Gherghetta$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2020)063$$p063 -$$tJHEP$$uT. Gherghetta, V.V. Khoze, A. Pomarol and Y. Shirman, The Axion Mass from 5D Small Instantons, JHEP 03 (2020) 063 [arXiv:2001.05610] [INSPIRE].$$v03$$y2020
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(01)00061-2$$uA.J. Buras et al., Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(02)00836-2$$uG. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
000619397 999C5 $$1G Isidori$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-012-2103-1$$p2103 -$$tEur. Phys. J. C$$uG. Isidori and D.M. Straub, Minimal Flavour Violation and Beyond, Eur. Phys. J. C 72 (2012) 2103 [arXiv:1202.0464] [INSPIRE].$$v72$$y2012
000619397 999C5 $$1CD Froggatt$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(79)90316-X$$p277 -$$tNucl. Phys. B$$uC.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].$$v147$$y1979
000619397 999C5 $$1M Bordone$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2020)067$$p067 -$$tJHEP$$uM. Bordone, O. Catà and T. Feldmann, Effective Theory Approach to New Physics with Flavour: General Framework and a Leptoquark Example, JHEP 01 (2020) 067 [arXiv:1910.02641] [INSPIRE].$$v01$$y2020
000619397 999C5 $$1W Dekens$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2013)149$$p149 -$$tJHEP$$uW. Dekens and J. de Vries, Renormalization Group Running of Dimension-Six Sources of Parity and Time-Reversal Violation, JHEP 05 (2013) 149 [arXiv:1303.3156] [INSPIRE].$$v05$$y2013
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.034031$$uV. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].
000619397 999C5 $$1S Alioli$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2017)086$$p086 -$$tJHEP$$uS. Alioli et al., Right-handed charged currents in the era of the Large Hadron Collider, JHEP 05 (2017) 086 [arXiv:1703.04751] [INSPIRE].$$v05$$y2017
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.015042$$uJ. de Vries et al., Indirect Signs of the Peccei-Quinn Mechanism, Phys. Rev. D 99 (2019) 015042 [arXiv:1809.10143] [INSPIRE].
000619397 999C5 $$1J Kley$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10861-5$$p926 -$$tEur. Phys. J. C$$uJ. Kley, T. Theil, E. Venturini and A. Weiler, Electric dipole moments at one-loop in the dimension-6 SMEFT, Eur. Phys. J. C 82 (2022) 926 [arXiv:2109.15085] [INSPIRE].$$v82$$y2022
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4684-0991-8_16$$uS.R. Coleman, The Uses of Instantons, Subnucl. Ser. 15 (1979) 805 [INSPIRE].
000619397 999C5 $$1AI Vainshtein$$2Crossref$$9-- missing cx lookup --$$a10.1070/PU1982v025n04ABEH004533$$p195 -$$tSov. Phys. Usp.$$uA.I. Vainshtein, V.I. Zakharov, V.A. Novikov and M.A. Shifman, ABC’s of Instantons, Sov. Phys. Usp. 25 (1982) 195 [INSPIRE].$$v25$$y1982
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/9781108885911$$uM. Shifman, Advanced topics in quantum field theory.: A lecture course, Cambridge Univ. Press, Cambridge, U.K. (2012) [https://doi.org/10.1017/9781108885911] [INSPIRE].
000619397 999C5 $$2Crossref$$uS. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, arXiv:0802.1862 [INSPIRE].
000619397 999C5 $$1N Dorey$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-1573(02)00301-0$$p231 -$$tPhys. Rept.$$uN. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The calculus of many instantons, Phys. Rept. 371 (2002) 231 [hep-th/0206063] [INSPIRE].$$v371$$y2002
000619397 999C5 $$2Crossref$$uD. Tong, TASI lectures on solitons: Instantons, monopoles, vortices and kinks, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Many Dimensions of String Theory, Boulder, U.S.A., June 05 – July 01 (2005) [hep-th/0509216] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.439.0008$$uM. Reece, TASI Lectures: (No) Global Symmetries to Axion Physics, PoS TASI2022 (2024) 008 [arXiv:2304.08512] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(75)90163-X$$uA.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B 59 (1975) 85 [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(86)90117-1$$uG. ’t Hooft, How Instantons Solve the U(1) Problem, Phys. Rept. 142 (1986) 357 [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(82)90478-3$$uE.V. Shuryak, The Role of Instantons in Quantum Chromodynamics. I. Physical Vacuum, Nucl. Phys. B 203 (1982) 93 [INSPIRE].
000619397 999C5 $$1EV Shuryak$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(82)90479-5$$p116 -$$tNucl. Phys. B$$uE.V. Shuryak, The Role of Instantons in Quantum Chromodynamics. II. Hadronic Structure, Nucl. Phys. B 203 (1982) 116 [INSPIRE].$$v203$$y1982
000619397 999C5 $$1D Diakonov$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(84)90432-2$$p259 -$$tNucl. Phys. B$$uD. Diakonov and V.Y. Petrov, Instanton Based Vacuum from Feynman Variational Principle, Nucl. Phys. B 245 (1984) 259 [INSPIRE].$$v245$$y1984
000619397 999C5 $$1D Diakonov$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(84)90132-1$$p351 -$$tPhys. Lett. B$$uD. Diakonov and V.Y. Petrov, Chiral Condensate in the Instanton Vacuum, Phys. Lett. B 147 (1984) 351 [INSPIRE].$$v147$$y1984
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.53.6522$$uT. Schäfer and E.V. Shuryak, The interacting instanton liquid in QCD at zero and finite temperature, Phys. Rev. D 53 (1996) 6522 [hep-ph/9509337] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.66.076009$$uT. Schäfer, Instantons in QCD with many colors, Phys. Rev. D 66 (2002) 076009 [hep-ph/0206062] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.19.3013$$uC.W. Bernard, Gauge Zero Modes, Instanton Determinants, and QCD Calculations, Phys. Rev. D 19 (1979) 3013 [INSPIRE].
000619397 999C5 $$1VA Novikov$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(83)90338-3$$p381 -$$tNucl. Phys. B$$uV.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].$$v229$$y1983
000619397 999C5 $$1VA Novikov$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(86)90810-5$$p329 -$$tPhys. Lett. B$$uV.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, The beta function in supersymmetric gauge theories. Instantons versus traditional approach, Phys. Lett. B 166 (1986) 329 [INSPIRE].$$v166$$y1986
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.105002$$uA. Monin, M. Shifman and A. Vainshtein, Spectral Flow in Instanton Computations and the β functions, Phys. Rev. D 108 (2023) 105002 [arXiv:2307.09119] [INSPIRE].
000619397 999C5 $$1C Grojean$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2013)016$$p016 -$$tJHEP$$uC. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Scaling of Higgs Operators and Γ(h → γγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].$$v04$$y2013
000619397 999C5 $$1EE Jenkins$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2013)087$$p087 -$$tJHEP$$uE.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].$$v10$$y2013
000619397 999C5 $$1EE Jenkins$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2014)035$$p035 -$$tJHEP$$uE.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].$$v01$$y2014
000619397 999C5 $$1R Alonso$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2014)159$$p159 -$$tJHEP$$uR. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].$$v04$$y2014
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2020)225$$uV. Gherardi, D. Marzocca and E. Venturini, Matching scalar leptoquarks to the SMEFT at one loop, JHEP 07 (2020) 225 [Erratum ibid. 01 (2021) 006] [arXiv:2003.12525] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(72)90279-9$$uG. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
000619397 999C5 $$1MS Chanowitz$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(79)90333-X$$p225 -$$tNucl. Phys. B$$uM.S. Chanowitz, M. Furman and I. Hinchliffe, The Axial Current in Dimensional Regularization, Nucl. Phys. B 159 (1979) 225 [INSPIRE].$$v159$$y1979
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(94)01419-D$$uC. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].
000619397 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/oso/9780198855743.003.0002$$uA.V. Manohar, Introduction to Effective Field Theories, arXiv:1804.05863 [https://doi.org/10.1093/oso/9780198855743.003.0002] [INSPIRE].