001     619369
005     20251119161734.0
024 7 _ |a Bulgarelli:2024yrz
|2 INSPIRETeX
024 7 _ |a inspire:2841207
|2 inspire
024 7 _ |a arXiv:2410.14466
|2 arXiv
024 7 _ |a 10.1103/PhysRevLett.134.151601
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-07588
|2 datacite_doi
024 7 _ |a altmetric:169515557
|2 altmetric
024 7 _ |a pmid:40315501
|2 pmid
024 7 _ |a openalex:W4409476019
|2 openalex
037 _ _ |a PUBDB-2024-07588
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2410.14466
|2 arXiv
100 1 _ |a Bulgarelli, Andrea
|0 P:(DE-H253)PIP1110088
|b 0
|e Corresponding author
245 _ _ |a Flow-based Sampling for Entanglement Entropy and the Machine Learning of Defects
260 _ _ |a College Park, Md.
|c 2025
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761751496_3365296
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 10 pages, 9 figures
520 _ _ |a We introduce a novel technique to numerically calculate Rényi entanglement entropies in lattice quantum field theory using generative models. We describe how flow-based approaches can be combined with the replica trick using a custom neural-network architecture around a lattice defect connecting two replicas. Numerical tests for the $\phi^4$ scalar field theory in two and three dimensions demonstrate that our technique outperforms state-of-the-art Monte Carlo calculations, and exhibit a promising scaling with the defect size.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a QUEST - QUantum computing for Excellence in Science and Technology (101087126)
|0 G:(EU-Grant)101087126
|c 101087126
|f HORIZON-WIDERA-2022-TALENTS-01
|x 1
536 _ _ |a DFG project G:(GEPRIS)511713970 - SFB 1639: NuMeriQS: Numerische Methoden zur Untersuchung von Dynamik und Strukturbildung in Quantensystemen (511713970)
|0 G:(GEPRIS)511713970
|c 511713970
|x 2
536 _ _ |a AQTIVATE - Advanced computing, quantum algorithms, and data-driven approaches for science, technology and engineering (101072344)
|0 G:(EU-Grant)101072344
|c 101072344
|f HORIZON-MSCA-2021-DN-01
|x 3
588 _ _ |a Dataset connected to INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Cellini, Elia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jansen, Karl
|0 P:(DE-H253)PIP1003636
|b 2
700 1 _ |a Kühn, Stefan
|0 P:(DE-H253)PIP1086314
|b 3
|e Corresponding author
700 1 _ |a Nada, Alessandro
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nakajima, Shinichi
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nicoli, Kim A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Panero, Marco
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1103/PhysRevLett.134.151601
|g Vol. 134, no. 15, p. 151601
|0 PERI:(DE-600)1472655-5
|n 15
|p 151601
|t Physical review letters
|v 134
|y 2025
|x 0031-9007
787 0 _ |a Bulgarelli, Andrea et.al.
|d 2025
|i IsParent
|0 PUBDB-2025-04648
|r arXiv:2410.14466
|t Flow-Based Sampling for Entanglement Entropy and the Machine Learning of Defects
856 4 _ |u https://bib-pubdb1.desy.de/record/619369/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/619369/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/619369/files/PhysRevLett.134.151601.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/619369/files/PhysRevLett.134.151601.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:619369
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Istituto Nazionale di Fisica Nucleare
|0 I:(DE-588b)214094-9
|k INFN
|b 0
|6 P:(DE-H253)PIP1110088
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1003636
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1086314
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-21
920 1 _ |0 I:(DE-H253)CQTA-20221102
|k CQTA
|l Centre f. Quantum Techno. a. Application
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CQTA-20221102
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21