Home > Publications database > Adaptive total variational regularization of Gaussian denoisers for multiplicative noise removal > print |
001 | 619279 | ||
005 | 20250723173050.0 | ||
024 | 7 | _ | |a 10.1016/j.camwa.2024.06.017 |2 doi |
024 | 7 | _ | |a 0097-4943 |2 ISSN |
024 | 7 | _ | |a 0898-1221 |2 ISSN |
024 | 7 | _ | |a 1873-7668 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-07527 |2 datacite_doi |
024 | 7 | _ | |a WOS:001271428200001 |2 WOS |
024 | 7 | _ | |a openalex:W4400601483 |2 openalex |
037 | _ | _ | |a PUBDB-2024-07527 |
041 | _ | _ | |a English |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a Shi, Kehan |0 P:(DE-H253)PIP1106487 |b 0 |e Corresponding author |
245 | _ | _ | |a Adaptive total variational regularization of Gaussian denoisers for multiplicative noise removal |
260 | _ | _ | |a Amsterdam [u.a.] |c 2024 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1734331835_422962 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this paper, a convex variational model based on the adaptive total variation (TV) regularization is proposedfor image restoration under multiplicative noise. The adaptive weight allows for greater smoothing in the brightregion for the suppression of speckles. The model includes a nonconvex data fidelity term and also a quadraticpenalty term that enforces the restored image to be close to a reference image deduced from a Gaussian denoiser.It can be viewed as the adaptive TV regularization of the Regularization by Denoising (RED) approach formultiplicative noise removal. We prove that the model admits a unique minimizer in a suitable function spaceand provide a fast numerical algorithm based on the alternating direction method with multipliers (ADMM) forit. Different Gaussian denoisers, including the patch-based algorithm BM3D and the learning-based algorithmDnCNN, are considered for the model in numerical experiments. It is shown that our model efficiently removesmultiplicative noise without introducing artifacts. |
536 | _ | _ | |a 623 - Data Management and Analysis (POF4-623) |0 G:(DE-HGF)POF4-623 |c POF4-623 |f POF IV |x 0 |
542 | _ | _ | |i 2024-08-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2024-08-01 |2 Crossref |u https://www.elsevier.com/legal/tdmrep-license |
542 | _ | _ | |i 2024-08-01 |2 Crossref |u https://doi.org/10.15223/policy-017 |
542 | _ | _ | |i 2024-08-01 |2 Crossref |u https://doi.org/10.15223/policy-037 |
542 | _ | _ | |i 2024-08-01 |2 Crossref |u https://doi.org/10.15223/policy-012 |
542 | _ | _ | |i 2024-08-01 |2 Crossref |u https://doi.org/10.15223/policy-029 |
542 | _ | _ | |i 2024-08-01 |2 Crossref |u https://doi.org/10.15223/policy-004 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
773 | 1 | 8 | |a 10.1016/j.camwa.2024.06.017 |b Elsevier BV |d 2024-08-01 |p 207-217 |3 journal-article |2 Crossref |t Computers & Mathematics with Applications |v 168 |y 2024 |x 0898-1221 |
773 | _ | _ | |a 10.1016/j.camwa.2024.06.017 |g Vol. 168, p. 207 - 217 |0 PERI:(DE-600)2004251-6 |p 207-217 |t Computers and mathematics with applications |v 168 |y 2024 |x 0898-1221 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619279/files/1-s2.0-S0898122124002852-main%20%281%29.pdf |
856 | 4 | _ | |y Published on 2024-08-15. Available in OpenAccess from 2025-08-15. |u https://bib-pubdb1.desy.de/record/619279/files/Manuscript.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/619279/files/1-s2.0-S0898122124002852-main%20%281%29.pdf?subformat=pdfa |
856 | 4 | _ | |y Published on 2024-08-15. Available in OpenAccess from 2025-08-15. |x pdfa |u https://bib-pubdb1.desy.de/record/619279/files/Manuscript.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:619279 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1106487 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1106487 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-623 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Data Management and Analysis |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2025-01-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT MATH APPL : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-02 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-H253)FS-CI-20230420 |k FS-CI |l Computational Imaging |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-CI-20230420 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1137/060671814 |9 -- missing cx lookup -- |1 Aubert |p 925 - |2 Crossref |t SIAM J. Appl. Math. |v 68 |y 2008 |
999 | C | 5 | |1 Aubert |y 2006 |2 Crossref |o Aubert 2006 |
999 | C | 5 | |a 10.1561/2200000016 |9 -- missing cx lookup -- |1 Boyd |p 1 - |2 Crossref |t Found. Trends Mach. Learn. |v 3 |y 2011 |
999 | C | 5 | |a 10.1016/j.jfa.2007.05.022 |9 -- missing cx lookup -- |1 Carlier |p 214 - |2 Crossref |t J. Funct. Anal. |v 250 |y 2007 |
999 | C | 5 | |a 10.1007/s10851-010-0251-1 |9 -- missing cx lookup -- |1 Chambolle |p 120 - |2 Crossref |t J. Math. Imaging Vis. |v 40 |y 2011 |
999 | C | 5 | |a 10.1002/cpa.20075 |9 -- missing cx lookup -- |1 Chan |p 579 - |2 Crossref |t Commun. Pure Appl. Math. |v 58 |y 2005 |
999 | C | 5 | |a 10.1016/S0022-247X(02)00141-5 |9 -- missing cx lookup -- |1 Chen |p 117 - |2 Crossref |t J. Math. Anal. Appl. |v 272 |y 2002 |
999 | C | 5 | |a 10.1109/LGRS.2013.2271650 |9 -- missing cx lookup -- |1 Cozzolino |p 524 - |2 Crossref |t IEEE Geosci. Remote Sens. Lett. |v 11 |y 2013 |
999 | C | 5 | |a 10.1109/TIP.2007.901238 |9 -- missing cx lookup -- |1 Dabov |p 2080 - |2 Crossref |t IEEE Trans. Image Process. |v 16 |y 2007 |
999 | C | 5 | |a 10.1109/TIP.2017.2713946 |9 -- missing cx lookup -- |1 Deledalle |p 4389 - |2 Crossref |t IEEE Trans. Image Process. |v 26 |y 2017 |
999 | C | 5 | |1 Dong |y 2013 |2 Crossref |o Dong 2013 |
999 | C | 5 | |a 10.1137/120870621 |9 -- missing cx lookup -- |1 Dong |p 1598 - |2 Crossref |t SIAM J. Imaging Sci. |v 6 |y 2013 |
999 | C | 5 | |1 Feng |y 2021 |2 Crossref |o Feng 2021 |
999 | C | 5 | |a 10.3390/s19143164 |9 -- missing cx lookup -- |1 Gao |p 3164 - |2 Crossref |t Sensors |v 19 |y 2019 |
999 | C | 5 | |a 10.1137/080725891 |9 -- missing cx lookup -- |1 Goldstein |p 323 - |2 Crossref |t SIAM J. Imaging Sci. |v 2 |y 2009 |
999 | C | 5 | |a 10.1006/cviu.1996.0060 |9 -- missing cx lookup -- |1 Immerkaer |p 300 - |2 Crossref |t Comput. Vis. Image Underst. |v 64 |y 1996 |
999 | C | 5 | |a 10.1137/19M1283033 |9 -- missing cx lookup -- |1 Majee |p 844 - |2 Crossref |t SIAM J. Imaging Sci. |v 13 |y 2020 |
999 | C | 5 | |1 Oliver |y 2004 |2 Crossref |o Oliver 2004 |
999 | C | 5 | |a 10.1137/16M1102884 |9 -- missing cx lookup -- |1 Romano |p 1804 - |2 Crossref |t SIAM J. Imaging Sci. |v 10 |y 2017 |
999 | C | 5 | |a 10.1016/0167-2789(92)90242-F |9 -- missing cx lookup -- |1 Rudin |p 259 - |2 Crossref |t Phys. D: Nonlinear Phenom. |v 60 |y 1992 |
999 | C | 5 | |a 10.1117/1.429925 |9 -- missing cx lookup -- |1 Schmitt |p 95 - |2 Crossref |t J. Biomed. Opt. |v 4 |y 1999 |
999 | C | 5 | |a 10.1137/140997816 |9 -- missing cx lookup -- |1 Sciacchitano |p 1894 - |2 Crossref |t SIAM J. Imaging Sci. |v 8 |y 2015 |
999 | C | 5 | |a 10.1007/s10851-018-00870-z |9 -- missing cx lookup -- |1 Shan |p 763 - |2 Crossref |t J. Math. Imaging Vis. |v 61 |y 2019 |
999 | C | 5 | |a 10.1137/S0036139901390088 |9 -- missing cx lookup -- |1 Shen |p 564 - |2 Crossref |t SIAM J. Appl. Math. |v 63 |y 2003 |
999 | C | 5 | |a 10.1007/s10851-009-0179-5 |9 -- missing cx lookup -- |1 Steidl |p 168 - |2 Crossref |t J. Math. Imaging Vis. |v 36 |y 2010 |
999 | C | 5 | |1 Strong |y 1996 |2 Crossref |o Strong 1996 |
999 | C | 5 | |a 10.1137/100803730 |9 -- missing cx lookup -- |1 Tai |p 313 - |2 Crossref |t SIAM J. Imaging Sci. |v 4 |y 2011 |
999 | C | 5 | |1 Venkatakrishnan |y 2013 |2 Crossref |o Venkatakrishnan 2013 |
999 | C | 5 | |a 10.1109/T-SU.1983.31404 |9 -- missing cx lookup -- |1 Wagner |p 156 - |2 Crossref |t IEEE Trans. Sonics Ultrason. |v 30 |y 1983 |
999 | C | 5 | |a 10.1109/TIP.2003.819861 |9 -- missing cx lookup -- |1 Wang |p 600 - |2 Crossref |t IEEE Trans. Image Process. |v 13 |y 2004 |
999 | C | 5 | |a 10.1109/TIP.2017.2662206 |9 -- missing cx lookup -- |1 Zhang |p 3142 - |2 Crossref |t IEEE Trans. Image Process. |v 26 |y 2017 |
999 | C | 5 | |a 10.1088/1361-6420/ac60bf |1 Zhang |9 -- missing cx lookup -- |2 Crossref |t Inverse Probl. |v 38 |y 2022 |
999 | C | 5 | |a 10.1007/s10915-021-01681-y |9 -- missing cx lookup -- |1 Zhang |p 1 - |2 Crossref |t J. Sci. Comput. |v 90 |y 2022 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|