001     619279
005     20250723173050.0
024 7 _ |a 10.1016/j.camwa.2024.06.017
|2 doi
024 7 _ |a 0097-4943
|2 ISSN
024 7 _ |a 0898-1221
|2 ISSN
024 7 _ |a 1873-7668
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-07527
|2 datacite_doi
024 7 _ |a WOS:001271428200001
|2 WOS
024 7 _ |a openalex:W4400601483
|2 openalex
037 _ _ |a PUBDB-2024-07527
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Shi, Kehan
|0 P:(DE-H253)PIP1106487
|b 0
|e Corresponding author
245 _ _ |a Adaptive total variational regularization of Gaussian denoisers for multiplicative noise removal
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734331835_422962
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper, a convex variational model based on the adaptive total variation (TV) regularization is proposedfor image restoration under multiplicative noise. The adaptive weight allows for greater smoothing in the brightregion for the suppression of speckles. The model includes a nonconvex data fidelity term and also a quadraticpenalty term that enforces the restored image to be close to a reference image deduced from a Gaussian denoiser.It can be viewed as the adaptive TV regularization of the Regularization by Denoising (RED) approach formultiplicative noise removal. We prove that the model admits a unique minimizer in a suitable function spaceand provide a fast numerical algorithm based on the alternating direction method with multipliers (ADMM) forit. Different Gaussian denoisers, including the patch-based algorithm BM3D and the learning-based algorithmDnCNN, are considered for the model in numerical experiments. It is shown that our model efficiently removesmultiplicative noise without introducing artifacts.
536 _ _ |a 623 - Data Management and Analysis (POF4-623)
|0 G:(DE-HGF)POF4-623
|c POF4-623
|f POF IV
|x 0
542 _ _ |i 2024-08-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2024-08-01
|2 Crossref
|u https://www.elsevier.com/legal/tdmrep-license
542 _ _ |i 2024-08-01
|2 Crossref
|u https://doi.org/10.15223/policy-017
542 _ _ |i 2024-08-01
|2 Crossref
|u https://doi.org/10.15223/policy-037
542 _ _ |i 2024-08-01
|2 Crossref
|u https://doi.org/10.15223/policy-012
542 _ _ |i 2024-08-01
|2 Crossref
|u https://doi.org/10.15223/policy-029
542 _ _ |i 2024-08-01
|2 Crossref
|u https://doi.org/10.15223/policy-004
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
773 1 8 |a 10.1016/j.camwa.2024.06.017
|b Elsevier BV
|d 2024-08-01
|p 207-217
|3 journal-article
|2 Crossref
|t Computers & Mathematics with Applications
|v 168
|y 2024
|x 0898-1221
773 _ _ |a 10.1016/j.camwa.2024.06.017
|g Vol. 168, p. 207 - 217
|0 PERI:(DE-600)2004251-6
|p 207-217
|t Computers and mathematics with applications
|v 168
|y 2024
|x 0898-1221
856 4 _ |u https://bib-pubdb1.desy.de/record/619279/files/1-s2.0-S0898122124002852-main%20%281%29.pdf
856 4 _ |y Published on 2024-08-15. Available in OpenAccess from 2025-08-15.
|u https://bib-pubdb1.desy.de/record/619279/files/Manuscript.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/619279/files/1-s2.0-S0898122124002852-main%20%281%29.pdf?subformat=pdfa
856 4 _ |y Published on 2024-08-15. Available in OpenAccess from 2025-08-15.
|x pdfa
|u https://bib-pubdb1.desy.de/record/619279/files/Manuscript.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:619279
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1106487
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1106487
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-623
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Data Management and Analysis
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT MATH APPL : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-02
920 1 _ |0 I:(DE-H253)FS-CI-20230420
|k FS-CI
|l Computational Imaging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CI-20230420
980 1 _ |a FullTexts
999 C 5 |a 10.1137/060671814
|9 -- missing cx lookup --
|1 Aubert
|p 925 -
|2 Crossref
|t SIAM J. Appl. Math.
|v 68
|y 2008
999 C 5 |1 Aubert
|y 2006
|2 Crossref
|o Aubert 2006
999 C 5 |a 10.1561/2200000016
|9 -- missing cx lookup --
|1 Boyd
|p 1 -
|2 Crossref
|t Found. Trends Mach. Learn.
|v 3
|y 2011
999 C 5 |a 10.1016/j.jfa.2007.05.022
|9 -- missing cx lookup --
|1 Carlier
|p 214 -
|2 Crossref
|t J. Funct. Anal.
|v 250
|y 2007
999 C 5 |a 10.1007/s10851-010-0251-1
|9 -- missing cx lookup --
|1 Chambolle
|p 120 -
|2 Crossref
|t J. Math. Imaging Vis.
|v 40
|y 2011
999 C 5 |a 10.1002/cpa.20075
|9 -- missing cx lookup --
|1 Chan
|p 579 -
|2 Crossref
|t Commun. Pure Appl. Math.
|v 58
|y 2005
999 C 5 |a 10.1016/S0022-247X(02)00141-5
|9 -- missing cx lookup --
|1 Chen
|p 117 -
|2 Crossref
|t J. Math. Anal. Appl.
|v 272
|y 2002
999 C 5 |a 10.1109/LGRS.2013.2271650
|9 -- missing cx lookup --
|1 Cozzolino
|p 524 -
|2 Crossref
|t IEEE Geosci. Remote Sens. Lett.
|v 11
|y 2013
999 C 5 |a 10.1109/TIP.2007.901238
|9 -- missing cx lookup --
|1 Dabov
|p 2080 -
|2 Crossref
|t IEEE Trans. Image Process.
|v 16
|y 2007
999 C 5 |a 10.1109/TIP.2017.2713946
|9 -- missing cx lookup --
|1 Deledalle
|p 4389 -
|2 Crossref
|t IEEE Trans. Image Process.
|v 26
|y 2017
999 C 5 |1 Dong
|y 2013
|2 Crossref
|o Dong 2013
999 C 5 |a 10.1137/120870621
|9 -- missing cx lookup --
|1 Dong
|p 1598 -
|2 Crossref
|t SIAM J. Imaging Sci.
|v 6
|y 2013
999 C 5 |1 Feng
|y 2021
|2 Crossref
|o Feng 2021
999 C 5 |a 10.3390/s19143164
|9 -- missing cx lookup --
|1 Gao
|p 3164 -
|2 Crossref
|t Sensors
|v 19
|y 2019
999 C 5 |a 10.1137/080725891
|9 -- missing cx lookup --
|1 Goldstein
|p 323 -
|2 Crossref
|t SIAM J. Imaging Sci.
|v 2
|y 2009
999 C 5 |a 10.1006/cviu.1996.0060
|9 -- missing cx lookup --
|1 Immerkaer
|p 300 -
|2 Crossref
|t Comput. Vis. Image Underst.
|v 64
|y 1996
999 C 5 |a 10.1137/19M1283033
|9 -- missing cx lookup --
|1 Majee
|p 844 -
|2 Crossref
|t SIAM J. Imaging Sci.
|v 13
|y 2020
999 C 5 |1 Oliver
|y 2004
|2 Crossref
|o Oliver 2004
999 C 5 |a 10.1137/16M1102884
|9 -- missing cx lookup --
|1 Romano
|p 1804 -
|2 Crossref
|t SIAM J. Imaging Sci.
|v 10
|y 2017
999 C 5 |a 10.1016/0167-2789(92)90242-F
|9 -- missing cx lookup --
|1 Rudin
|p 259 -
|2 Crossref
|t Phys. D: Nonlinear Phenom.
|v 60
|y 1992
999 C 5 |a 10.1117/1.429925
|9 -- missing cx lookup --
|1 Schmitt
|p 95 -
|2 Crossref
|t J. Biomed. Opt.
|v 4
|y 1999
999 C 5 |a 10.1137/140997816
|9 -- missing cx lookup --
|1 Sciacchitano
|p 1894 -
|2 Crossref
|t SIAM J. Imaging Sci.
|v 8
|y 2015
999 C 5 |a 10.1007/s10851-018-00870-z
|9 -- missing cx lookup --
|1 Shan
|p 763 -
|2 Crossref
|t J. Math. Imaging Vis.
|v 61
|y 2019
999 C 5 |a 10.1137/S0036139901390088
|9 -- missing cx lookup --
|1 Shen
|p 564 -
|2 Crossref
|t SIAM J. Appl. Math.
|v 63
|y 2003
999 C 5 |a 10.1007/s10851-009-0179-5
|9 -- missing cx lookup --
|1 Steidl
|p 168 -
|2 Crossref
|t J. Math. Imaging Vis.
|v 36
|y 2010
999 C 5 |1 Strong
|y 1996
|2 Crossref
|o Strong 1996
999 C 5 |a 10.1137/100803730
|9 -- missing cx lookup --
|1 Tai
|p 313 -
|2 Crossref
|t SIAM J. Imaging Sci.
|v 4
|y 2011
999 C 5 |1 Venkatakrishnan
|y 2013
|2 Crossref
|o Venkatakrishnan 2013
999 C 5 |a 10.1109/T-SU.1983.31404
|9 -- missing cx lookup --
|1 Wagner
|p 156 -
|2 Crossref
|t IEEE Trans. Sonics Ultrason.
|v 30
|y 1983
999 C 5 |a 10.1109/TIP.2003.819861
|9 -- missing cx lookup --
|1 Wang
|p 600 -
|2 Crossref
|t IEEE Trans. Image Process.
|v 13
|y 2004
999 C 5 |a 10.1109/TIP.2017.2662206
|9 -- missing cx lookup --
|1 Zhang
|p 3142 -
|2 Crossref
|t IEEE Trans. Image Process.
|v 26
|y 2017
999 C 5 |a 10.1088/1361-6420/ac60bf
|1 Zhang
|9 -- missing cx lookup --
|2 Crossref
|t Inverse Probl.
|v 38
|y 2022
999 C 5 |a 10.1007/s10915-021-01681-y
|9 -- missing cx lookup --
|1 Zhang
|p 1 -
|2 Crossref
|t J. Sci. Comput.
|v 90
|y 2022


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21