000619279 001__ 619279
000619279 005__ 20250723173050.0
000619279 0247_ $$2doi$$a10.1016/j.camwa.2024.06.017
000619279 0247_ $$2ISSN$$a0097-4943
000619279 0247_ $$2ISSN$$a0898-1221
000619279 0247_ $$2ISSN$$a1873-7668
000619279 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-07527
000619279 0247_ $$2WOS$$aWOS:001271428200001
000619279 0247_ $$2openalex$$aopenalex:W4400601483
000619279 037__ $$aPUBDB-2024-07527
000619279 041__ $$aEnglish
000619279 082__ $$a004
000619279 1001_ $$0P:(DE-H253)PIP1106487$$aShi, Kehan$$b0$$eCorresponding author
000619279 245__ $$aAdaptive total variational regularization of Gaussian denoisers for multiplicative noise removal
000619279 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
000619279 3367_ $$2DRIVER$$aarticle
000619279 3367_ $$2DataCite$$aOutput Types/Journal article
000619279 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734331835_422962
000619279 3367_ $$2BibTeX$$aARTICLE
000619279 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000619279 3367_ $$00$$2EndNote$$aJournal Article
000619279 520__ $$aIn this paper, a convex variational model based on the adaptive total variation (TV) regularization is proposedfor image restoration under multiplicative noise. The adaptive weight allows for greater smoothing in the brightregion for the suppression of speckles. The model includes a nonconvex data fidelity term and also a quadraticpenalty term that enforces the restored image to be close to a reference image deduced from a Gaussian denoiser.It can be viewed as the adaptive TV regularization of the Regularization by Denoising (RED) approach formultiplicative noise removal. We prove that the model admits a unique minimizer in a suitable function spaceand provide a fast numerical algorithm based on the alternating direction method with multipliers (ADMM) forit. Different Gaussian denoisers, including the patch-based algorithm BM3D and the learning-based algorithmDnCNN, are considered for the model in numerical experiments. It is shown that our model efficiently removesmultiplicative noise without introducing artifacts.
000619279 536__ $$0G:(DE-HGF)POF4-623$$a623 - Data Management and Analysis (POF4-623)$$cPOF4-623$$fPOF IV$$x0
000619279 542__ $$2Crossref$$i2024-08-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000619279 542__ $$2Crossref$$i2024-08-01$$uhttps://www.elsevier.com/legal/tdmrep-license
000619279 542__ $$2Crossref$$i2024-08-01$$uhttps://doi.org/10.15223/policy-017
000619279 542__ $$2Crossref$$i2024-08-01$$uhttps://doi.org/10.15223/policy-037
000619279 542__ $$2Crossref$$i2024-08-01$$uhttps://doi.org/10.15223/policy-012
000619279 542__ $$2Crossref$$i2024-08-01$$uhttps://doi.org/10.15223/policy-029
000619279 542__ $$2Crossref$$i2024-08-01$$uhttps://doi.org/10.15223/policy-004
000619279 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000619279 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000619279 77318 $$2Crossref$$3journal-article$$a10.1016/j.camwa.2024.06.017$$bElsevier BV$$d2024-08-01$$p207-217$$tComputers & Mathematics with Applications$$v168$$x0898-1221$$y2024
000619279 773__ $$0PERI:(DE-600)2004251-6$$a10.1016/j.camwa.2024.06.017$$gVol. 168, p. 207 - 217$$p207-217$$tComputers and mathematics with applications$$v168$$x0898-1221$$y2024
000619279 8564_ $$uhttps://bib-pubdb1.desy.de/record/619279/files/1-s2.0-S0898122124002852-main%20%281%29.pdf
000619279 8564_ $$uhttps://bib-pubdb1.desy.de/record/619279/files/Manuscript.pdf$$yPublished on 2024-08-15. Available in OpenAccess from 2025-08-15.
000619279 8564_ $$uhttps://bib-pubdb1.desy.de/record/619279/files/1-s2.0-S0898122124002852-main%20%281%29.pdf?subformat=pdfa$$xpdfa
000619279 8564_ $$uhttps://bib-pubdb1.desy.de/record/619279/files/Manuscript.pdf?subformat=pdfa$$xpdfa$$yPublished on 2024-08-15. Available in OpenAccess from 2025-08-15.
000619279 909CO $$ooai:bib-pubdb1.desy.de:619279$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000619279 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1106487$$aExternal Institute$$b0$$kExtern
000619279 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1106487$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000619279 9131_ $$0G:(DE-HGF)POF4-623$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vData Management and Analysis$$x0
000619279 9141_ $$y2024
000619279 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000619279 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000619279 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000619279 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000619279 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000619279 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02
000619279 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000619279 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000619279 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT MATH APPL : 2022$$d2025-01-02
000619279 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000619279 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
000619279 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
000619279 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-02
000619279 9201_ $$0I:(DE-H253)FS-CI-20230420$$kFS-CI$$lComputational Imaging$$x0
000619279 980__ $$ajournal
000619279 980__ $$aVDB
000619279 980__ $$aUNRESTRICTED
000619279 980__ $$aI:(DE-H253)FS-CI-20230420
000619279 9801_ $$aFullTexts
000619279 999C5 $$1Aubert$$2Crossref$$9-- missing cx lookup --$$a10.1137/060671814$$p925 -$$tSIAM J. Appl. Math.$$v68$$y2008
000619279 999C5 $$1Aubert$$2Crossref$$oAubert 2006$$y2006
000619279 999C5 $$1Boyd$$2Crossref$$9-- missing cx lookup --$$a10.1561/2200000016$$p1 -$$tFound. Trends Mach. Learn.$$v3$$y2011
000619279 999C5 $$1Carlier$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jfa.2007.05.022$$p214 -$$tJ. Funct. Anal.$$v250$$y2007
000619279 999C5 $$1Chambolle$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10851-010-0251-1$$p120 -$$tJ. Math. Imaging Vis.$$v40$$y2011
000619279 999C5 $$1Chan$$2Crossref$$9-- missing cx lookup --$$a10.1002/cpa.20075$$p579 -$$tCommun. Pure Appl. Math.$$v58$$y2005
000619279 999C5 $$1Chen$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0022-247X(02)00141-5$$p117 -$$tJ. Math. Anal. Appl.$$v272$$y2002
000619279 999C5 $$1Cozzolino$$2Crossref$$9-- missing cx lookup --$$a10.1109/LGRS.2013.2271650$$p524 -$$tIEEE Geosci. Remote Sens. Lett.$$v11$$y2013
000619279 999C5 $$1Dabov$$2Crossref$$9-- missing cx lookup --$$a10.1109/TIP.2007.901238$$p2080 -$$tIEEE Trans. Image Process.$$v16$$y2007
000619279 999C5 $$1Deledalle$$2Crossref$$9-- missing cx lookup --$$a10.1109/TIP.2017.2713946$$p4389 -$$tIEEE Trans. Image Process.$$v26$$y2017
000619279 999C5 $$1Dong$$2Crossref$$oDong 2013$$y2013
000619279 999C5 $$1Dong$$2Crossref$$9-- missing cx lookup --$$a10.1137/120870621$$p1598 -$$tSIAM J. Imaging Sci.$$v6$$y2013
000619279 999C5 $$1Feng$$2Crossref$$oFeng 2021$$y2021
000619279 999C5 $$1Gao$$2Crossref$$9-- missing cx lookup --$$a10.3390/s19143164$$p3164 -$$tSensors$$v19$$y2019
000619279 999C5 $$1Goldstein$$2Crossref$$9-- missing cx lookup --$$a10.1137/080725891$$p323 -$$tSIAM J. Imaging Sci.$$v2$$y2009
000619279 999C5 $$1Immerkaer$$2Crossref$$9-- missing cx lookup --$$a10.1006/cviu.1996.0060$$p300 -$$tComput. Vis. Image Underst.$$v64$$y1996
000619279 999C5 $$1Majee$$2Crossref$$9-- missing cx lookup --$$a10.1137/19M1283033$$p844 -$$tSIAM J. Imaging Sci.$$v13$$y2020
000619279 999C5 $$1Oliver$$2Crossref$$oOliver 2004$$y2004
000619279 999C5 $$1Romano$$2Crossref$$9-- missing cx lookup --$$a10.1137/16M1102884$$p1804 -$$tSIAM J. Imaging Sci.$$v10$$y2017
000619279 999C5 $$1Rudin$$2Crossref$$9-- missing cx lookup --$$a10.1016/0167-2789(92)90242-F$$p259 -$$tPhys. D: Nonlinear Phenom.$$v60$$y1992
000619279 999C5 $$1Schmitt$$2Crossref$$9-- missing cx lookup --$$a10.1117/1.429925$$p95 -$$tJ. Biomed. Opt.$$v4$$y1999
000619279 999C5 $$1Sciacchitano$$2Crossref$$9-- missing cx lookup --$$a10.1137/140997816$$p1894 -$$tSIAM J. Imaging Sci.$$v8$$y2015
000619279 999C5 $$1Shan$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10851-018-00870-z$$p763 -$$tJ. Math. Imaging Vis.$$v61$$y2019
000619279 999C5 $$1Shen$$2Crossref$$9-- missing cx lookup --$$a10.1137/S0036139901390088$$p564 -$$tSIAM J. Appl. Math.$$v63$$y2003
000619279 999C5 $$1Steidl$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10851-009-0179-5$$p168 -$$tJ. Math. Imaging Vis.$$v36$$y2010
000619279 999C5 $$1Strong$$2Crossref$$oStrong 1996$$y1996
000619279 999C5 $$1Tai$$2Crossref$$9-- missing cx lookup --$$a10.1137/100803730$$p313 -$$tSIAM J. Imaging Sci.$$v4$$y2011
000619279 999C5 $$1Venkatakrishnan$$2Crossref$$oVenkatakrishnan 2013$$y2013
000619279 999C5 $$1Wagner$$2Crossref$$9-- missing cx lookup --$$a10.1109/T-SU.1983.31404$$p156 -$$tIEEE Trans. Sonics Ultrason.$$v30$$y1983
000619279 999C5 $$1Wang$$2Crossref$$9-- missing cx lookup --$$a10.1109/TIP.2003.819861$$p600 -$$tIEEE Trans. Image Process.$$v13$$y2004
000619279 999C5 $$1Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1109/TIP.2017.2662206$$p3142 -$$tIEEE Trans. Image Process.$$v26$$y2017
000619279 999C5 $$1Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6420/ac60bf$$tInverse Probl.$$v38$$y2022
000619279 999C5 $$1Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10915-021-01681-y$$p1 -$$tJ. Sci. Comput.$$v90$$y2022