001 | 619278 | ||
005 | 20250715171115.0 | ||
024 | 7 | _ | |a 10.1021/acs.chemmater.3c03173 |2 doi |
024 | 7 | _ | |a 0897-4756 |2 ISSN |
024 | 7 | _ | |a 1520-5002 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-07526 |2 datacite_doi |
024 | 7 | _ | |a WOS:001180297700001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4392459298 |
037 | _ | _ | |a PUBDB-2024-07526 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Deyu, Getnet Kacha |0 P:(DE-H253)PIP1093737 |b 0 |e Corresponding author |
245 | _ | _ | |a Reducing the Thermal Effects during Coating of Superconducting Radio-Frequency Cavities: A Case Study for Atomic Layer Deposition of Alumina with a Combined Numerical and Experimental Approach |
260 | _ | _ | |a Washington, DC |c 2024 |b American Chemical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1733927210_2837377 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Coating the inner surface of superconducting radio frequency (SRF) cavities is one of the strategies to push ultimate limits in next generation accelerators. One of the potential coating techniques for such intricate and large volume structures is atomic layer deposition (ALD), as it offers full and uniform layer coverage. In order to predict the process parameters for coating SRF cavities on the large substrates with ALD, we simulate the ALD of alumina (Al$_2$O$_3$) on the ANSYS Fluent 19.1 commercial package by solving vapor transport and chemistry equations. The computational domain in the numerical model is based on the homemade ALD setup for thin film sample chamber and a 1.3 GHz Tesla-shaped niobium cavity. Trimethlyaluminum (TMA) and water (H$_2$O) were used as precursors. In the simulation process for the cavity, two steps were carried out: first, the simulation of precursor distribution, followed by the simulation of surface reactions. The simulations show that saturation is achieved with precursor pulses of only 50 ms after 1.05 s for TMA and 750 ms for H$_2$O, obviating the necessity for prolonged exposure times. Furthermore, the resulting predicted growth per cycle of these process times of ≈1.22 Å for Al2O3 was experimentally validated, affirming the credibility of our simulations. Experimental findings also showcased a remarkable 66.2% reduction in process time while upholding film homogeneity and quality. Our approach presented here carries profound importance, particularly for coating intricate and large volume structures, like SRF cavities, and provides another approach to minimize time- and resource-intensive parameter scans. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
536 | _ | _ | |a 05H21GURB2 - Verbundprojekt 05H2021 - R&D BESCHLEUNIGER (TOSCA): Neue Ansätze zur Messung und Modellierung der Oberflächeneigenschaften supraleitender Resonatoren (BMBF-05H21GURB2) |0 G:(DE-Ds200)BMBF-05H21GURB2 |c BMBF-05H21GURB2 |f 05H21GURB2 |x 1 |
536 | _ | _ | |a 05K22GUD - Verbundprojekt 05K2022 - NOVALIS: Innovative Beschleunigertechnologien für effiziente Strahlungsquellen. Teilprojekt 1. (BMBF-05K22GUD) |0 G:(DE-Ds200)BMBF-05K22GUD |c BMBF-05K22GUD |f 05K22GUD |x 2 |
542 | _ | _ | |i 2024-03-05 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Parikh, Trupen |0 P:(DE-H253)PIP1091505 |b 1 |
700 | 1 | _ | |a Wenskat, Marc |0 P:(DE-H253)PIP1007185 |b 2 |u desy |
700 | 1 | _ | |a Gonzalez Diaz-Palacio, Isabel |0 P:(DE-H253)PIP1092556 |b 3 |
700 | 1 | _ | |a Blick, Robert H. |0 P:(DE-H253)PIP1027258 |b 4 |
700 | 1 | _ | |a Zierold, Robert |0 P:(DE-H253)PIP1083711 |b 5 |
700 | 1 | _ | |a Hillert, Wolfgang |0 P:(DE-H253)PIP1032393 |b 6 |
773 | 1 | 8 | |a 10.1021/acs.chemmater.3c03173 |b American Chemical Society (ACS) |d 2024-03-05 |n 6 |p 2846-2856 |3 journal-article |2 Crossref |t Chemistry of Materials |v 36 |y 2024 |x 0897-4756 |
773 | _ | _ | |a 10.1021/acs.chemmater.3c03173 |g Vol. 36, no. 6, p. 2846 - 2856 |0 PERI:(DE-600)1500399-1 |n 6 |p 2846-2856 |t Chemistry of materials |v 36 |y 2024 |x 0897-4756 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/619278/files/deyu-et-al-2024-reducing-the-thermal-effects-during-coating-of-superconducting-radio-frequency-cavities-a-case-study.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/619278/files/deyu-et-al-2024-reducing-the-thermal-effects-during-coating-of-superconducting-radio-frequency-cavities-a-case-study.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:619278 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1093737 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1091505 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1007185 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1092556 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1027258 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1083711 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 6 |6 P:(DE-H253)PIP1032393 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1032393 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-23 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-23 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-16 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM MATER : 2022 |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-16 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-16 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CHEM MATER : 2022 |d 2024-12-16 |
920 | 1 | _ | |0 I:(DE-H253)MVS-20120731 |k MVS |l Vakuumsysteme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)MVS-20120731 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.48550/arXiv.2004.06720 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0953-2048/26/10/102001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-6668/aa7afe |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevApplied.13.014024 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0953-2048/29/11/113002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.48550/arXiv.2204.02536 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/5.0155557 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.2162264 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevApplied.4.044019 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-6668/abdedd |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/cr900056b |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1940727 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1116/1.3609974 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.5060967 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.mattod.2014.04.026 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/cm301732t |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/cvde.200306265 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0040-6090(02)00438-8 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/cm200276z |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.5054908 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/c7ta03116e |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1109/TASC.2021.3055752 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-6668/aca83f |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |2 Crossref |u Eremeev, G.; Wu, A. T.; Valente-Feliciano, A. M.; Gu, D. Exploring the effect of Al2O3 ALD coating on a high gradient ILC single-cell cavity. In Proceedings of IPAC: Louisiana, USA, 2012. https://accelconf.web.cern.ch/IPAC2012/papers/weppc096.pdwebf. |
999 | C | 5 | |2 Crossref |u Proslier, T.; Atomic layer deposition for SRF cavities. In 23rd Particle Accelerator Conference PAC09: Vancouver, Canada, 2009. https://accelconf.web.cern.ch/pac2009/papers/tu5pfp002.pdwebf. |
999 | C | 5 | |2 Crossref |u Bira, S.; Progresses on thin film deposition by ALD at IRFU/IJCLab. In Tesla Technology Collaboration Workshop TTC21: Hamburg, Germany, 2021. https://indico.desy.de/event/27572/contributions/94312web/. |
999 | C | 5 | |2 Crossref |u Proslier, T.; Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition. In 14th International Conference on RF Superconductivity SRF2009: Berlin, Germany, 2009. https://accelconf.web.cern.ch/SRF2009/talks/tuobau04_talk.pdwebf. |
999 | C | 5 | |2 Crossref |u Ciovati, G.; Review of High Field Q-Slope, Cavity Measurements. In 13th International Conference on RF Superconductivity SRF2007: Beijing, China, 2007. https://accelconf.web.cern.ch/srf2007/PAPERS/TU102.pdwebf. |
999 | C | 5 | |a 10.1103/PhysRevSTAB.13.022002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.22.103102 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevApplied.13.014024 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41598-020-65083-0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.2172/1825287 |9 -- missing cx lookup -- |2 Crossref |u Bafia, D.; The Role of Oxygen Concentration in Enabling High Gradients in Niobium SRF Cavities. In 20th International Conference on RF Superconductivity SRF21, THPTEV016, East Lansing: USA, 2021. https://lss.fnal.gov/archive/2021/conf/fermilab-conf-21-320-td.pdwebf. |
999 | C | 5 | |a 10.1115/1.4034475 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1116/1.4905726 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1116/1.4833561 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ijheatmasstransfer.2015.07.123 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 Pan D. |y 2016 |2 Crossref |t Numerical and Experimental Studies of Atomic Layer Deposition for Sustainability Improvement |o Pan D. Numerical and Experimental Studies of Atomic Layer Deposition for Sustainability Improvement 2016 |
999 | C | 5 | |a 10.1116/1.3664090 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevSTAB.3.092001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41598-022-09054-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ces.2018.09.037 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.4939654 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.3390/ma12142232 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.langmuir.9b01600 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|