001     619278
005     20250715171115.0
024 7 _ |a 10.1021/acs.chemmater.3c03173
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-07526
|2 datacite_doi
024 7 _ |a WOS:001180297700001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4392459298
037 _ _ |a PUBDB-2024-07526
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Deyu, Getnet Kacha
|0 P:(DE-H253)PIP1093737
|b 0
|e Corresponding author
245 _ _ |a Reducing the Thermal Effects during Coating of Superconducting Radio-Frequency Cavities: A Case Study for Atomic Layer Deposition of Alumina with a Combined Numerical and Experimental Approach
260 _ _ |a Washington, DC
|c 2024
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1733927210_2837377
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Coating the inner surface of superconducting radio frequency (SRF) cavities is one of the strategies to push ultimate limits in next generation accelerators. One of the potential coating techniques for such intricate and large volume structures is atomic layer deposition (ALD), as it offers full and uniform layer coverage. In order to predict the process parameters for coating SRF cavities on the large substrates with ALD, we simulate the ALD of alumina (Al$_2$O$_3$) on the ANSYS Fluent 19.1 commercial package by solving vapor transport and chemistry equations. The computational domain in the numerical model is based on the homemade ALD setup for thin film sample chamber and a 1.3 GHz Tesla-shaped niobium cavity. Trimethlyaluminum (TMA) and water (H$_2$O) were used as precursors. In the simulation process for the cavity, two steps were carried out: first, the simulation of precursor distribution, followed by the simulation of surface reactions. The simulations show that saturation is achieved with precursor pulses of only 50 ms after 1.05 s for TMA and 750 ms for H$_2$O, obviating the necessity for prolonged exposure times. Furthermore, the resulting predicted growth per cycle of these process times of ≈1.22 Å for Al2O3 was experimentally validated, affirming the credibility of our simulations. Experimental findings also showcased a remarkable 66.2% reduction in process time while upholding film homogeneity and quality. Our approach presented here carries profound importance, particularly for coating intricate and large volume structures, like SRF cavities, and provides another approach to minimize time- and resource-intensive parameter scans.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a 05H21GURB2 - Verbundprojekt 05H2021 - R&D BESCHLEUNIGER (TOSCA): Neue Ansätze zur Messung und Modellierung der Oberflächeneigenschaften supraleitender Resonatoren (BMBF-05H21GURB2)
|0 G:(DE-Ds200)BMBF-05H21GURB2
|c BMBF-05H21GURB2
|f 05H21GURB2
|x 1
536 _ _ |a 05K22GUD - Verbundprojekt 05K2022 - NOVALIS: Innovative Beschleunigertechnologien für effiziente Strahlungsquellen. Teilprojekt 1. (BMBF-05K22GUD)
|0 G:(DE-Ds200)BMBF-05K22GUD
|c BMBF-05K22GUD
|f 05K22GUD
|x 2
542 _ _ |i 2024-03-05
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Parikh, Trupen
|0 P:(DE-H253)PIP1091505
|b 1
700 1 _ |a Wenskat, Marc
|0 P:(DE-H253)PIP1007185
|b 2
|u desy
700 1 _ |a Gonzalez Diaz-Palacio, Isabel
|0 P:(DE-H253)PIP1092556
|b 3
700 1 _ |a Blick, Robert H.
|0 P:(DE-H253)PIP1027258
|b 4
700 1 _ |a Zierold, Robert
|0 P:(DE-H253)PIP1083711
|b 5
700 1 _ |a Hillert, Wolfgang
|0 P:(DE-H253)PIP1032393
|b 6
773 1 8 |a 10.1021/acs.chemmater.3c03173
|b American Chemical Society (ACS)
|d 2024-03-05
|n 6
|p 2846-2856
|3 journal-article
|2 Crossref
|t Chemistry of Materials
|v 36
|y 2024
|x 0897-4756
773 _ _ |a 10.1021/acs.chemmater.3c03173
|g Vol. 36, no. 6, p. 2846 - 2856
|0 PERI:(DE-600)1500399-1
|n 6
|p 2846-2856
|t Chemistry of materials
|v 36
|y 2024
|x 0897-4756
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/619278/files/deyu-et-al-2024-reducing-the-thermal-effects-during-coating-of-superconducting-radio-frequency-cavities-a-case-study.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/619278/files/deyu-et-al-2024-reducing-the-thermal-effects-during-coating-of-superconducting-radio-frequency-cavities-a-case-study.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:619278
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1093737
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1091505
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1007185
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1092556
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1027258
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1083711
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 6
|6 P:(DE-H253)PIP1032393
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1032393
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM MATER : 2022
|d 2024-12-16
920 1 _ |0 I:(DE-H253)MVS-20120731
|k MVS
|l Vakuumsysteme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MVS-20120731
980 1 _ |a FullTexts
999 C 5 |a 10.48550/arXiv.2004.06720
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-2048/26/10/102001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-6668/aa7afe
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevApplied.13.014024
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-2048/29/11/113002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.48550/arXiv.2204.02536
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/5.0155557
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2162264
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevApplied.4.044019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-6668/abdedd
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cr900056b
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1940727
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1116/1.3609974
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.5060967
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.mattod.2014.04.026
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cm301732t
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cvde.200306265
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0040-6090(02)00438-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cm200276z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.5054908
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c7ta03116e
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1109/TASC.2021.3055752
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-6668/aca83f
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Eremeev, G.; Wu, A. T.; Valente-Feliciano, A. M.; Gu, D. Exploring the effect of Al2O3 ALD coating on a high gradient ILC single-cell cavity. In Proceedings of IPAC: Louisiana, USA, 2012. https://accelconf.web.cern.ch/IPAC2012/papers/weppc096.pdwebf.
999 C 5 |2 Crossref
|u Proslier, T.; Atomic layer deposition for SRF cavities. In 23rd Particle Accelerator Conference PAC09: Vancouver, Canada, 2009. https://accelconf.web.cern.ch/pac2009/papers/tu5pfp002.pdwebf.
999 C 5 |2 Crossref
|u Bira, S.; Progresses on thin film deposition by ALD at IRFU/IJCLab. In Tesla Technology Collaboration Workshop TTC21: Hamburg, Germany, 2021. https://indico.desy.de/event/27572/contributions/94312web/.
999 C 5 |2 Crossref
|u Proslier, T.; Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition. In 14th International Conference on RF Superconductivity SRF2009: Berlin, Germany, 2009. https://accelconf.web.cern.ch/SRF2009/talks/tuobau04_talk.pdwebf.
999 C 5 |2 Crossref
|u Ciovati, G.; Review of High Field Q-Slope, Cavity Measurements. In 13th International Conference on RF Superconductivity SRF2007: Beijing, China, 2007. https://accelconf.web.cern.ch/srf2007/PAPERS/TU102.pdwebf.
999 C 5 |a 10.1103/PhysRevSTAB.13.022002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevAccelBeams.22.103102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevApplied.13.014024
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41598-020-65083-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.2172/1825287
|9 -- missing cx lookup --
|2 Crossref
|u Bafia, D.; The Role of Oxygen Concentration in Enabling High Gradients in Niobium SRF Cavities. In 20th International Conference on RF Superconductivity SRF21, THPTEV016, East Lansing: USA, 2021. https://lss.fnal.gov/archive/2021/conf/fermilab-conf-21-320-td.pdwebf.
999 C 5 |a 10.1115/1.4034475
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1116/1.4905726
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1116/1.4833561
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ijheatmasstransfer.2015.07.123
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Pan D.
|y 2016
|2 Crossref
|t Numerical and Experimental Studies of Atomic Layer Deposition for Sustainability Improvement
|o Pan D. Numerical and Experimental Studies of Atomic Layer Deposition for Sustainability Improvement 2016
999 C 5 |a 10.1116/1.3664090
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevSTAB.3.092001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41598-022-09054-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ces.2018.09.037
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4939654
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3390/ma12142232
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.langmuir.9b01600
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21