000619278 001__ 619278
000619278 005__ 20250715171115.0
000619278 0247_ $$2doi$$a10.1021/acs.chemmater.3c03173
000619278 0247_ $$2ISSN$$a0897-4756
000619278 0247_ $$2ISSN$$a1520-5002
000619278 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-07526
000619278 0247_ $$2WOS$$aWOS:001180297700001
000619278 0247_ $$2openalex$$aopenalex:W4392459298
000619278 037__ $$aPUBDB-2024-07526
000619278 041__ $$aEnglish
000619278 082__ $$a540
000619278 1001_ $$0P:(DE-H253)PIP1093737$$aDeyu, Getnet Kacha$$b0$$eCorresponding author
000619278 245__ $$aReducing the Thermal Effects during Coating of Superconducting Radio-Frequency Cavities: A Case Study for Atomic Layer Deposition of Alumina with a Combined Numerical and Experimental Approach
000619278 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2024
000619278 3367_ $$2DRIVER$$aarticle
000619278 3367_ $$2DataCite$$aOutput Types/Journal article
000619278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1733927210_2837377
000619278 3367_ $$2BibTeX$$aARTICLE
000619278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000619278 3367_ $$00$$2EndNote$$aJournal Article
000619278 520__ $$aCoating the inner surface of superconducting radio frequency (SRF) cavities is one of the strategies to push ultimate limits in next generation accelerators. One of the potential coating techniques for such intricate and large volume structures is atomic layer deposition (ALD), as it offers full and uniform layer coverage. In order to predict the process parameters for coating SRF cavities on the large substrates with ALD, we simulate the ALD of alumina (Al$_2$O$_3$) on the ANSYS Fluent 19.1 commercial package by solving vapor transport and chemistry equations. The computational domain in the numerical model is based on the homemade ALD setup for thin film sample chamber and a 1.3 GHz Tesla-shaped niobium cavity. Trimethlyaluminum (TMA) and water (H$_2$O) were used as precursors. In the simulation process for the cavity, two steps were carried out: first, the simulation of precursor distribution, followed by the simulation of surface reactions. The simulations show that saturation is achieved with precursor pulses of only 50 ms after 1.05 s for TMA and 750 ms for H$_2$O, obviating the necessity for prolonged exposure times. Furthermore, the resulting predicted growth per cycle of these process times of ≈1.22 Å for Al2O3 was experimentally validated, affirming the credibility of our simulations. Experimental findings also showcased a remarkable 66.2% reduction in process time while upholding film homogeneity and quality. Our approach presented here carries profound importance, particularly for coating intricate and large volume structures, like SRF cavities, and provides another approach to minimize time- and resource-intensive parameter scans.  
000619278 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000619278 536__ $$0G:(DE-Ds200)BMBF-05H21GURB2$$a05H21GURB2 - Verbundprojekt 05H2021 - R&D BESCHLEUNIGER (TOSCA): Neue Ansätze zur Messung und Modellierung der Oberflächeneigenschaften supraleitender Resonatoren (BMBF-05H21GURB2)$$cBMBF-05H21GURB2$$f05H21GURB2$$x1
000619278 536__ $$0G:(DE-Ds200)BMBF-05K22GUD$$a05K22GUD - Verbundprojekt 05K2022 - NOVALIS: Innovative Beschleunigertechnologien für effiziente Strahlungsquellen. Teilprojekt 1. (BMBF-05K22GUD)$$cBMBF-05K22GUD$$f05K22GUD$$x2
000619278 542__ $$2Crossref$$i2024-03-05$$uhttps://creativecommons.org/licenses/by/4.0/
000619278 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000619278 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000619278 7001_ $$0P:(DE-H253)PIP1091505$$aParikh, Trupen$$b1
000619278 7001_ $$0P:(DE-H253)PIP1007185$$aWenskat, Marc$$b2$$udesy
000619278 7001_ $$0P:(DE-H253)PIP1092556$$aGonzalez Diaz-Palacio, Isabel$$b3
000619278 7001_ $$0P:(DE-H253)PIP1027258$$aBlick, Robert H.$$b4
000619278 7001_ $$0P:(DE-H253)PIP1083711$$aZierold, Robert$$b5
000619278 7001_ $$0P:(DE-H253)PIP1032393$$aHillert, Wolfgang$$b6
000619278 77318 $$2Crossref$$3journal-article$$a10.1021/acs.chemmater.3c03173$$bAmerican Chemical Society (ACS)$$d2024-03-05$$n6$$p2846-2856$$tChemistry of Materials$$v36$$x0897-4756$$y2024
000619278 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.3c03173$$gVol. 36, no. 6, p. 2846 - 2856$$n6$$p2846-2856$$tChemistry of materials$$v36$$x0897-4756$$y2024
000619278 8564_ $$uhttps://bib-pubdb1.desy.de/record/619278/files/deyu-et-al-2024-reducing-the-thermal-effects-during-coating-of-superconducting-radio-frequency-cavities-a-case-study.pdf$$yOpenAccess
000619278 8564_ $$uhttps://bib-pubdb1.desy.de/record/619278/files/deyu-et-al-2024-reducing-the-thermal-effects-during-coating-of-superconducting-radio-frequency-cavities-a-case-study.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000619278 909CO $$ooai:bib-pubdb1.desy.de:619278$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000619278 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093737$$aExternal Institute$$b0$$kExtern
000619278 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1091505$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000619278 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007185$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000619278 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092556$$aExternal Institute$$b3$$kExtern
000619278 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027258$$aExternal Institute$$b4$$kExtern
000619278 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083711$$aExternal Institute$$b5$$kExtern
000619278 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1032393$$aCentre for Free-Electron Laser Science$$b6$$kCFEL
000619278 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1032393$$aExternal Institute$$b6$$kExtern
000619278 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000619278 9141_ $$y2024
000619278 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
000619278 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000619278 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
000619278 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000619278 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
000619278 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2022$$d2024-12-16
000619278 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000619278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000619278 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000619278 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000619278 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000619278 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000619278 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-16
000619278 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000619278 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2022$$d2024-12-16
000619278 9201_ $$0I:(DE-H253)MVS-20120731$$kMVS$$lVakuumsysteme$$x0
000619278 980__ $$ajournal
000619278 980__ $$aVDB
000619278 980__ $$aUNRESTRICTED
000619278 980__ $$aI:(DE-H253)MVS-20120731
000619278 9801_ $$aFullTexts
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/arXiv.2004.06720
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-2048/26/10/102001
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6668/aa7afe
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.13.014024
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-2048/29/11/113002
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/arXiv.2204.02536
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0155557
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2162264
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.4.044019
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6668/abdedd
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cr900056b
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1940727
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.3609974
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5060967
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mattod.2014.04.026
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm301732t
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/cvde.200306265
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0040-6090(02)00438-8
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm200276z
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5054908
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c7ta03116e
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/TASC.2021.3055752
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6668/aca83f
000619278 999C5 $$2Crossref$$uEremeev, G.; Wu, A. T.; Valente-Feliciano, A. M.; Gu, D. Exploring the effect of Al2O3 ALD coating on a high gradient ILC single-cell cavity. In Proceedings of IPAC: Louisiana, USA, 2012. https://accelconf.web.cern.ch/IPAC2012/papers/weppc096.pdwebf.
000619278 999C5 $$2Crossref$$uProslier, T.; Atomic layer deposition for SRF cavities. In 23rd Particle Accelerator Conference PAC09: Vancouver, Canada, 2009. https://accelconf.web.cern.ch/pac2009/papers/tu5pfp002.pdwebf.
000619278 999C5 $$2Crossref$$uBira, S.; Progresses on thin film deposition by ALD at IRFU/IJCLab. In Tesla Technology Collaboration Workshop TTC21: Hamburg, Germany, 2021. https://indico.desy.de/event/27572/contributions/94312web/.
000619278 999C5 $$2Crossref$$uProslier, T.; Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition. In 14th International Conference on RF Superconductivity SRF2009: Berlin, Germany, 2009. https://accelconf.web.cern.ch/SRF2009/talks/tuobau04_talk.pdwebf.
000619278 999C5 $$2Crossref$$uCiovati, G.; Review of High Field Q-Slope, Cavity Measurements. In 13th International Conference on RF Superconductivity SRF2007: Beijing, China, 2007. https://accelconf.web.cern.ch/srf2007/PAPERS/TU102.pdwebf.
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevSTAB.13.022002
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevAccelBeams.22.103102
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.13.014024
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-020-65083-0
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2172/1825287$$uBafia, D.; The Role of Oxygen Concentration in Enabling High Gradients in Niobium SRF Cavities. In 20th International Conference on RF Superconductivity SRF21, THPTEV016, East Lansing: USA, 2021. https://lss.fnal.gov/archive/2021/conf/fermilab-conf-21-320-td.pdwebf.
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1115/1.4034475
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.4905726
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.4833561
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijheatmasstransfer.2015.07.123
000619278 999C5 $$1Pan D.$$2Crossref$$oPan D. Numerical and Experimental Studies of Atomic Layer Deposition for Sustainability Improvement 2016$$tNumerical and Experimental Studies of Atomic Layer Deposition for Sustainability Improvement$$y2016
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.3664090
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevSTAB.3.092001
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-022-09054-7
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ces.2018.09.037
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4939654
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/ma12142232
000619278 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.9b01600