001     619094
005     20250723173028.0
024 7 _ |a 10.1038/s41535-024-00624-8
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-07381
|2 datacite_doi
024 7 _ |a altmetric:137045946
|2 altmetric
024 7 _ |a WOS:001156717900001
|2 WOS
024 7 _ |a openalex:W4391509770
|2 openalex
037 _ _ |a PUBDB-2024-07381
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Coak, M. J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Magnetotransport of Sm$_2$Ir$_2$O$_7$ across the pressure-induced quantum-critical phase boundary
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736771670_3648087
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rare-earth pyrochlore iridates host two interlocking magnetic sublattices of corner-sharing tetrahedra and can harbour a unique combination of frustrated moments, exotic excitations and highly correlated electrons. They are also the first systems predicted to display both topological Weyl semimetal and axion insulator phases. We have measured the transport and magnetotransport properties of single-crystal Sm$_2$Ir$_2$O$_7$ up to and beyond the pressure-induced quantum critical point for all-in-all-out (AIAO) Ir order at p$_c$ = 63 kbar previously identified by resonant X-ray scattering and close to which Weyl semimetallic behavior has been previously predicted. Our findings overturn the accepted expectation that the suppression of AIAO order should lead to metallic conduction persisting down to zero temperature. Instead, the resistivity-minimum temperature, which tracks the decrease in the AIAO ordering temperature for pressures up to 30 kbar, begins to increase under further application of pressure, pointing to the presence of a second as-yet unidentified mechanism leading to non-metallic behavior. The magnetotransport does track the suppression of Ir magnetism, however, with a strong hysteresis observed only within the AIAO phase boundary, similar to that found for Ho$_2$Ir$_2$O$_7$ and attributed to plastic deformation of Ir domains. Around p$_c$ we find the emergence of a new type of electronic phase, characterized by a negative magnetoresistance with small hysteresis at the lowest temperatures, and hysteresis-free positive magnetoresistance above approximately 5 K. The temperature dependence of our low-temperature transport data are found to be best described by a model consistent with a Weyl semimetal across the entire pressure range.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a ExtremeQuantum - Quantum materials under extreme conditions (681260)
|0 G:(EU-Grant)681260
|c 681260
|f ERC-2015-CoG
|x 1
542 _ _ |i 2024-02-03
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-02-03
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Götze, K.
|0 P:(DE-H253)PIP1098433
|b 1
700 1 _ |a Northam De La Fuente, T.
|b 2
700 1 _ |a Castelnovo, C.
|0 0000-0003-1752-6343
|b 3
700 1 _ |a Tidey, J. P.
|0 0000-0001-5934-0454
|b 4
700 1 _ |a Singleton, J.
|b 5
700 1 _ |a Boothroyd, A. T.
|0 P:(DE-H253)PIP1020102
|b 6
700 1 _ |a Prabhakaran, D.
|b 7
700 1 _ |a Goddard, P. A.
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 1 8 |a 10.1038/s41535-024-00624-8
|b Springer Science and Business Media LLC
|d 2024-02-03
|n 1
|p 17
|3 journal-article
|2 Crossref
|t npj Quantum Materials
|v 9
|y 2024
|x 2397-4648
773 _ _ |a 10.1038/s41535-024-00624-8
|g Vol. 9, no. 1, p. 17
|0 PERI:(DE-600)2882263-8
|n 1
|p 17
|t npj quantum materials
|v 9
|y 2024
|x 2397-4648
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/619094/files/s41535-024-00624-8.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/619094/files/s41535-024-00624-8.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:619094
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1098433
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1020102
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NPJ QUANTUM MATER : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:44:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:44:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:44:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NPJ QUANTUM MATER : 2022
|d 2025-01-07
920 1 _ |0 I:(DE-H253)FS-US-20120731
|k FS-US
|l FS-Undulator Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-US-20120731
980 1 _ |a FullTexts
999 C 5 |a 10.1103/PhysRevLett.79.2554
|9 -- missing cx lookup --
|1 MJ Harris
|p 2554 -
|2 Crossref
|u Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Phys. Rev. Lett. 79, 2554 (1997).
|t Phys. Rev. Lett.
|v 79
|y 1997
999 C 5 |a 10.1126/science.1064761
|9 -- missing cx lookup --
|1 ST Bramwell
|p 1495 -
|2 Crossref
|u Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495 (2001).
|t Science
|v 294
|y 2001
999 C 5 |a 10.1038/nature06433
|9 -- missing cx lookup --
|1 C Castelnovo
|p 42 -
|2 Crossref
|u Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42 (2008).
|t Nature
|v 451
|y 2008
999 C 5 |a 10.1126/science.1178868
|9 -- missing cx lookup --
|1 DJP Morris
|p 411 -
|2 Crossref
|u Morris, D. J. P. et al. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7. Science 326, 411 (2009).
|t Science
|v 326
|y 2009
999 C 5 |a 10.1126/science.1177582
|9 -- missing cx lookup --
|1 T Fennell
|p 415 -
|2 Crossref
|u Fennell, T. et al. Magnetic coulomb phase in the spin ice Ho2Ti2O7. Science 326, 415 (2009).
|t Science
|v 326
|y 2009
999 C 5 |a 10.1143/JPSJ.78.103706
|9 -- missing cx lookup --
|1 H Kadowaki
|p 103706 -
|2 Crossref
|u Kadowaki, H. et al. Observation of magnetic monopoles in spin ice. J. Phys. Soc. Jpn. 78, 103706 (2009).
|t J. Phys. Soc. Jpn.
|v 78
|y 2009
999 C 5 |1 N Taira
|y 2001
|2 Crossref
|u Taira, N., Wakeshima, M. & Hinatsu, Y. Magnetic properties of iridium pyrochlores R2Ir2O7 (R = Y, Sm, Eu and Lu). J. Phys.: Cond. Mat. 13, 5527 (2001).
999 C 5 |a 10.1103/PhysRevB.90.235110
|9 -- missing cx lookup --
|2 Crossref
|u Takatsu, H., Watanabe, K., Goto, K. & Kadowaki, H. Comparative study of low-temperature x-ray diffraction experiments on R2Ir2O7 (R = Nd, Eu, and Pr). Phys. Rev. B 90, 235110 (2014).
999 C 5 |a 10.1103/PhysRevLett.117.037201
|9 -- missing cx lookup --
|1 C Donnerer
|p 037201 -
|2 Crossref
|u Donnerer, C. et al. All-in–all-out magnetic order and propagating spin waves in Sm2Ir2O7. Phys. Rev. Lett. 117, 037201 (2016).
|t Phys. Rev. Lett.
|v 117
|y 2016
999 C 5 |a 10.1143/JPSJ.81.034709
|9 -- missing cx lookup --
|1 K Tomiyasu
|p 034709 -
|2 Crossref
|u Tomiyasu, K. et al. Emergence of magnetic long-range order in frustrated pyrochlore Nd2Ir2O7 with metal–insulator transition. J. Phys. Soc. Jpn. 81, 034709 (2012).
|t J. Phys. Soc. Jpn.
|v 81
|y 2012
999 C 5 |a 10.1103/PhysRevLett.120.177203
|9 -- missing cx lookup --
|1 SH Chun
|p 177203 -
|2 Crossref
|u Chun, S. H. et al. Magnetic excitations across the metal-insulator transition in the pyrochlore iridate Eu2Ir2O7. Phys. Rev. Lett. 120, 177203 (2018).
|t Phys. Rev. Lett.
|v 120
|y 2018
999 C 5 |a 10.1103/PhysRevB.101.220404
|9 -- missing cx lookup --
|1 Y Wang
|p 220404(R) -
|2 Crossref
|u Wang, Y., Rosenbaum, T. F., Prabhakaran, D., Boothroyd, A. T. & Feng, Y. Approaching the quantum critical point in a highly correlated all-in–all-out antiferromagnet. Phys. Rev. B 101, 220404(R) (2020).
|t Phys. Rev. B
|v 101
|y 2020
999 C 5 |a 10.1103/PhysRevB.101.104404
|9 -- missing cx lookup --
|1 H Jacobsen
|p 104404 -
|2 Crossref
|u Jacobsen, H. et al. Strong quantum fluctuations from competition between magnetic phases in a pyrochlore iridate. Phys. Rev. B 101, 104404 (2020).
|t Phys. Rev. B
|v 101
|y 2020
999 C 5 |a 10.1038/s41467-017-00277-1
|1 E Lefrançois
|9 -- missing cx lookup --
|2 Crossref
|u Lefrançois, E. et al. Fragmentation in spin ice from magnetic charge injection. Nat. Commun. 8, 209 (2017).
|t Nat. Commun.
|v 8
|y 2017
999 C 5 |a 10.1103/PhysRevResearch.2.032073
|9 -- missing cx lookup --
|1 V Cathelin
|p 032073(R) -
|2 Crossref
|u Cathelin, V. et al. Fragmented monopole crystal, dimer entropy, and Coulomb interactions in Dy2Ir2O7. Phys. Rev. Res. 2, 032073(R) (2020).
|t Phys. Rev. Res.
|v 2
|y 2020
999 C 5 |a 10.1038/s41467-022-27964-y
|1 MJ Pearce
|9 -- missing cx lookup --
|2 Crossref
|u Pearce, M. J. et al. Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates. Nat. Commun. 13, 444 (2022).
|t Nat. Commun.
|v 13
|y 2022
999 C 5 |a 10.1146/annurev-conmatphys-020911-125058
|9 -- missing cx lookup --
|1 C Castelnovo
|p 35 -
|2 Crossref
|u Castelnovo, C., Moessner, R. & Sondhi, S. Spin ice, fractionalization, and topological order. Ann. Rev. Cond. Mat. Phys. 3, 35 (2012).
|t Ann. Rev. Cond. Mat. Phys.
|v 3
|y 2012
999 C 5 |1 ME Brooks-Bartlett
|y 2014
|2 Crossref
|u Brooks-Bartlett, M. E., Banks, S. T., Jaubert, L. D. C., Harman-Clarke, A. & Holdsworth, P. C. W. Magnetic-moment fragmentation and monopole crystallization. Phys. Rev. X 4, 011007 (2014).
999 C 5 |a 10.1103/PhysRevB.92.121110
|9 -- missing cx lookup --
|1 K Ueda
|p 121110(R) -
|2 Crossref
|u Ueda, K., Fujioka, J., Terakura, C. & Tokura, Y. Pressure and magnetic field effects on metal-insulator transitions of bulk and domain wall states in pyrochlore iridates. Phys. Rev. B 92, 121110(R) (2015).
|t Phys. Rev. B
|v 92
|y 2015
999 C 5 |a 10.1103/PhysRevB.85.045124
|9 -- missing cx lookup --
|1 W Witczak-Krempa
|p 045124 -
|2 Crossref
|u Witczak-Krempa, W. & Kim, Y. B. Topological and magnetic phases of interacting electrons in the pyrochlore iridates. Phys. Rev. B 85, 045124 (2012).
|t Phys. Rev. B
|v 85
|y 2012
999 C 5 |a 10.1038/ncomms10042
|1 T Kondo
|9 -- missing cx lookup --
|2 Crossref
|u Kondo, T. et al. Quadratic Fermi node in a 3D strongly correlated semimetal. Nat. Commun. 6, 10042 (2015).
|t Nat. Commun.
|v 6
|y 2015
999 C 5 |a 10.1103/PhysRevLett.117.056403
|9 -- missing cx lookup --
|1 M Nakayama
|p 056403 -
|2 Crossref
|u Nakayama, M. et al. Slater to Mott crossover in the metal to insulator transition of Nd2Ir2O7. Phys. Rev. Lett. 117, 056403 (2016).
|t Phys. Rev. Lett.
|v 117
|y 2016
999 C 5 |a 10.1103/PhysRevB.83.041102
|9 -- missing cx lookup --
|1 M Sakata
|p 041102 -
|2 Crossref
|u Sakata, M. et al. Suppression of metal-insulator transition at high pressure and pressure-induced magnetic ordering in pyrochlore oxide Nd2Ir2O7. Phys. Rev. B 83, 041102 (2011).
|t Phys. Rev. B
|v 83
|y 2011
999 C 5 |a 10.1038/nphys3567
|9 -- missing cx lookup --
|1 Z Tian
|p 134 -
|2 Crossref
|u Tian, Z. et al. Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7. Nat. Phys. 12, 134 (2016).
|t Nat. Phys.
|v 12
|y 2016
999 C 5 |a 10.1038/ncomms15515
|1 K Ueda
|9 -- missing cx lookup --
|2 Crossref
|u Ueda, K. et al. Magnetic-field induced multiple topological phases in pyrochlore iridates with Mott criticality. Nat. Commun. 8, 15515 (2017).
|t Nat. Commun.
|v 8
|y 2017
999 C 5 |a 10.1126/science.aac8289
|9 -- missing cx lookup --
|1 EY Ma
|p 538 -
|2 Crossref
|u Ma, E. Y. et al. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science 350, 538 (2015).
|t Science
|v 350
|y 2015
999 C 5 |a 10.1038/s41467-018-05530-9
|1 K Ueda
|9 -- missing cx lookup --
|2 Crossref
|u Ueda, K. et al. Spontaneous Hall effect in the Weyl semimetal candidate of all-in all-out pyrochlore iridate. Nat. Commun. 9, 3032 (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |1 L Savary
|y 2014
|2 Crossref
|u Savary, L., Moon, E.-G. & Balents, L. New type of quantum criticality in the pyrochlore iridates. Phys. Rev. X 4, 041027 (2014).
999 C 5 |a 10.1103/PhysRevLett.96.087204
|9 -- missing cx lookup --
|1 S Nakatsuji
|p 087204 -
|2 Crossref
|u Nakatsuji, S. et al. Metallic spin-liquid behavior of the geometrically frustrated kondo lattice Pr2Ir2O7. Phys. Rev. Lett. 96, 087204 (2006).
|t Phys. Rev. Lett.
|v 96
|y 2006
999 C 5 |a 10.1038/s41467-020-20562-w
|1 JM Ni
|9 -- missing cx lookup --
|2 Crossref
|u Ni, J. M. et al. Giant isotropic magneto-thermal conductivity of metallic spin liquid candidate Pr2Ir2O7 with quantum criticality. Nat. Commun. 12, 307 (2021).
|t Nat. Commun.
|v 12
|y 2021
999 C 5 |a 10.1143/JPSJ.80.094701
|9 -- missing cx lookup --
|1 K Matsuhira
|p 094701 -
|2 Crossref
|u Matsuhira, K., Wakeshima, M., Hinatsu, Y. & Takagi, S. Metal–insulator transitions in pyrochlore oxides Ln2Ir2O7. J. Phys. Soc. Jpn. 80, 094701 (2011).
|t J. Phys. Soc. Jpn.
|v 80
|y 2011
999 C 5 |a 10.1103/PhysRevLett.118.026404
|9 -- missing cx lookup --
|1 H Zhang
|p 026404 -
|2 Crossref
|u Zhang, H., Haule, K. & Vanderbilt, D. Metal-insulator transition and topological properties of pyrochlore iridates. Phys. Rev. Lett. 118, 026404 (2017).
|t Phys. Rev. Lett.
|v 118
|y 2017
999 C 5 |a 10.1016/j.jallcom.2018.01.077
|9 -- missing cx lookup --
|1 W Liu
|p 182 -
|2 Crossref
|u Liu, W. et al. Different pressure effects in A2Ir2O7 (A = Gd, Eu, and Sm). J. Alloy. Compd. 741, 182 (2018).
|t J. Alloy. Compd.
|v 741
|y 2018
999 C 5 |a 10.1038/nmat3900
|9 -- missing cx lookup --
|1 Y Tokiwa
|p 356 -
|2 Crossref
|u Tokiwa, Y., Ishikawa, J. J., Nakatsuji, S. & Gegenwart, P. Quantum criticality in a metallic spin liquid. Nat. Mat. s. 13, 356 (2014).
|t Nat. Mat. s.
|v 13
|y 2014
999 C 5 |a 10.1146/annurev-conmatphys-020911-125138
|9 -- missing cx lookup --
|1 W Witczak-Krempa
|p 57 -
|2 Crossref
|u Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Ann. Rev. Cond. Mat. Phys. 5, 57 (2014).
|t Ann. Rev. Cond. Mat. Phys.
|v 5
|y 2014
999 C 5 |a 10.1103/PhysRevLett.115.056402
|9 -- missing cx lookup --
|1 K Ueda
|p 056402 -
|2 Crossref
|u Ueda, K. et al. Magnetic field-induced insulator-semimetal transition in a pyrochlore Nd2Ir2O7. Phys. Rev. Lett. 115, 056402 (2015).
|t Phys. Rev. Lett.
|v 115
|y 2015
999 C 5 |a 10.1103/PhysRevB.85.205104
|9 -- missing cx lookup --
|1 FF Tafti
|p 205104 -
|2 Crossref
|u Tafti, F. F., Ishikawa, J. J., McCollam, A., Nakatsuji, S. & Julian, S. R. Pressure-tuned insulator to metal transition in Eu2Ir2O7. Phys. Rev. B 85, 205104 (2012).
|t Phys. Rev. B
|v 85
|y 2012
999 C 5 |a 10.1103/PhysRevB.85.245109
|9 -- missing cx lookup --
|1 JJ Ishikawa
|p 245109 -
|2 Crossref
|u Ishikawa, J. J., O’Farrell, E. C. T. & Nakatsuji, S. Continuous transition between antiferromagnetic insulator and paramagnetic metal in the pyrochlore iridate Eu2Ir2O7. Phys. Rev. B 85, 245109 (2012).
|t Phys. Rev. B
|v 85
|y 2012
999 C 5 |a 10.7566/JPSJ.86.024705
|9 -- missing cx lookup --
|1 R Asih
|p 024705 -
|2 Crossref
|u Asih, R. et al. Magnetic moments and ordered states in pyrochlore iridates Nd2Ir2O7 and Sm2Ir2O7 studied by muon-spin relaxation. J. Phys. Soc. Jpn. 86, 024705 (2017).
|t J. Phys. Soc. Jpn.
|v 86
|y 2017
999 C 5 |a 10.1103/PhysRevB.83.205101
|9 -- missing cx lookup --
|1 X Wan
|p 205101 -
|2 Crossref
|u Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
|t Phys. Rev. B
|v 83
|y 2011
999 C 5 |a 10.7566/JPSJ.84.073703
|9 -- missing cx lookup --
|1 F Ishii
|p 073703 -
|2 Crossref
|u Ishii, F. et al. First-principles study on cubic pyrochlore iridates Y2Ir2O7 and Pr2Ir2O7. J. Phys. Soc. Jpn. 84, 073703 (2015).
|t J. Phys. Soc. Jpn.
|v 84
|y 2015
999 C 5 |a 10.1088/1367-2630/10/8/083025
|9 -- missing cx lookup --
|1 PA Goddard
|p 083025 -
|2 Crossref
|u Goddard, P. A. et al. Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magnets. N. J. Phys. 10, 083025 (2008).
|t N. J. Phys.
|v 10
|y 2008
999 C 5 |2 Crossref
|u Boothroyd, A. T. SPECTRE: a program for calculating spectroscopic properties of rare earth ions in crystals (1990–2014). https://groups.physics.ox.ac.uk/Boothroyd/.
999 C 5 |a 10.1103/PhysRevB.99.134415
|9 -- missing cx lookup --
|1 V Peçanha-Antonio
|p 134415 -
|2 Crossref
|u Peçanha-Antonio, V. et al. Intermultiplet transitions and magnetic long-range order in Sm-based pyrochlores. Phys. Rev. B 99, 134415 (2019).
|t Phys. Rev. B
|v 99
|y 2019
999 C 5 |a 10.1103/PhysRevB.90.054419
|9 -- missing cx lookup --
|1 WK Zhu
|p 054419 -
|2 Crossref
|u Zhu, W. K., Wang, M., Seradjeh, B., Yang, F. & Zhang, S. X. Enhanced weak ferromagnetism and conductivity in hole-doped pyrochlore iridate Y2Ir2O7. Phys. Rev. B 90, 054419 (2014).
|t Phys. Rev. B
|v 90
|y 2014
999 C 5 |a 10.1088/1742-6596/551/1/012020
|9 -- missing cx lookup --
|1 MJ Graf
|p 012020 -
|2 Crossref
|u Graf, M. J. et al. Magnetism and magnetic order in the pyrochlore iridates in the insulator-to-metal crossover region. J. Phys. Conf. Ser. 551, 012020 (2014).
|t J. Phys. Conf. Ser.
|v 551
|y 2014
999 C 5 |a 10.1103/PhysRevB.99.201112
|9 -- missing cx lookup --
|1 P Telang
|p 201112(R) -
|2 Crossref
|u Telang, P., Mishra, K., Prando, G., Sood, A. K. & Singh, S. Anomalous lattice contraction and emergent electronic phases in Bi-doped Eu2Ir2O7. Phys. Rev. B 99, 201112(R) (2019).
|t Phys. Rev. B
|v 99
|y 2019
999 C 5 |a 10.1088/1361-648X/ab4aaf
|9 -- missing cx lookup --
|1 PG LaBarre
|p 02LT01 -
|2 Crossref
|u LaBarre, P. G., Dong, L., Trinh, J., Siegrist, T. & Ramirez, A. P. Evidence for undoped Weyl semimetal charge transport in Y2Ir2O7. J. Phys. Cond. Mat. 32, 02LT01 (2019).
|t J. Phys. Cond. Mat.
|v 32
|y 2019
999 C 5 |a 10.1063/5.0019876
|9 -- missing cx lookup --
|1 X Liu
|p 041903 -
|2 Crossref
|u Liu, X. et al. In-situ fabrication and transport properties of (111) Y2Ir2O7 epitaxial thin film. Appl. Phys. Lett. 117, 041903 (2020).
|t Appl. Phys. Lett.
|v 117
|y 2020
999 C 5 |a 10.1080/14786435.2015.1086033
|9 -- missing cx lookup --
|1 H Han
|p 3014 -
|2 Crossref
|u Han, H. et al. Electron paramagnetic resonance study of the f–d interaction in pyrochlore iridate Gd2Ir2O7. Philos. Mag. 95, 3014 (2015).
|t Philos. Mag.
|v 95
|y 2015
999 C 5 |2 Crossref
|u Telang, P. & Singh, S. Protracting the Weyl phase by a giant negative lattice expansion in Bi doped Sm2Ir2O7, ArXiv 2106.03512. http://arxiv.org/abs/2106.03512v1 (2021).
999 C 5 |a 10.1016/0022-4596(90)90201-8
|9 -- missing cx lookup --
|1 N Mott
|p 5 -
|2 Crossref
|u Mott, N. On metal-insulator transitions. J. Solid State Chem. 88, 5 (1990).
|t J. Solid State Chem.
|v 88
|y 1990
999 C 5 |a 10.1016/b978-0-08-015543-2.50005-x
|9 -- missing cx lookup --
|2 Crossref
|u Mott, N. Charge transport in non-crystalline semiconductors, Festkörper Probleme IX (Elsevier, https://doi.org/10.1016/b978-0-08-015543-2.50005-x, 1969) pp. 22–45.
999 C 5 |a 10.1002/pssa.2210340223
|9 -- missing cx lookup --
|1 R Hill
|p 601 -
|2 Crossref
|u Hill, R. Variable-range hopping. Phys. Status Solidi (a) 34, 601 (1976).
|t Phys. Status Solidi (a)
|v 34
|y 1976
999 C 5 |a 10.1103/PhysRevB.56.1161
|9 -- missing cx lookup --
|1 FW Van Keuls
|p 1161 -
|2 Crossref
|u Van Keuls, F. W., Hu, X. L., Jiang, H. W. & Dahm, A. J. Screening of the Coulomb interaction in two-dimensional variable-range hopping. Phys. Rev. B 56, 1161 (1997).
|t Phys. Rev. B
|v 56
|y 1997
999 C 5 |a 10.1103/PhysRevB.48.11167
|9 -- missing cx lookup --
|1 DG Polyakov
|p 11167 -
|2 Crossref
|u Polyakov, D. G. & Shklovskii, B. I. Conductivity-peak broadening in the quantum Hall regime. Phys. Rev. B 48, 11167 (1993).
|t Phys. Rev. B
|v 48
|y 1993
999 C 5 |a 10.1103/PhysRevLett.108.046602
|9 -- missing cx lookup --
|1 P Hosur
|p 046602 -
|2 Crossref
|u Hosur, P., Parameswaran, S. A. & Vishwanath, A. Charge transport in Weyl Semimetals. Phys. Rev. Lett. 108, 046602 (2012).
|t Phys. Rev. Lett.
|v 108
|y 2012
999 C 5 |a 10.1038/srep09711
|1 TC Fujita
|9 -- missing cx lookup --
|2 Crossref
|u Fujita, T. C. et al. Odd-parity magnetoresistance in pyrochlore iridate thin films with broken time-reversal symmetry. Sci. Rep. 5, 9711 (2015).
|t Sci. Rep.
|v 5
|y 2015
999 C 5 |a 10.1021/acs.jpcc.0c06020
|9 -- missing cx lookup --
|1 L Xu
|p 22656 -
|2 Crossref
|u Xu, L. et al. Asymmetric magnetization reversal behaviors driven by exchange coupling between all-in-all-out magnetic domains and domain walls in a Eu2Ir2O7 single crystal. J. Phys. Chem. C. 124, 22656 (2020).
|t J. Phys. Chem. C.
|v 124
|y 2020
999 C 5 |a 10.1103/PhysRevB.93.195146
|9 -- missing cx lookup --
|1 Y Yamaji
|p 195146 -
|2 Crossref
|u Yamaji, Y. & Imada, M. Modulated helical metals at magnetic domain walls of pyrochlore iridium oxides. Phys. Rev. B 93, 195146 (2016).
|t Phys. Rev. B
|v 93
|y 2016
999 C 5 |a 10.1103/PhysRevB.93.245120
|9 -- missing cx lookup --
|1 K Ueda
|p 245120 -
|2 Crossref
|u Ueda, K., Fujioka, J. & Tokura, Y. Variation of optical conductivity spectra in the course of bandwidth-controlled metal-insulator transitions in pyrochlore iridates. Phys. Rev. B 93, 245120 (2016).
|t Phys. Rev. B
|v 93
|y 2016
999 C 5 |a 10.1103/PhysRevB.102.245131
|9 -- missing cx lookup --
|1 K Ueda
|p 245131 -
|2 Crossref
|u Ueda, K., Fukuda, H., Kaneko, R., Fujioka, J. & Tokura, Y. Evolution of possible Weyl semimetal states across the Mott transition in pyrochlore iridates induced by hole doping. Phys. Rev. B 102, 245131 (2020).
|t Phys. Rev. B
|v 102
|y 2020
999 C 5 |a 10.1103/PhysRevB.105.L161102
|9 -- missing cx lookup --
|1 K Ueda
|p L161102 -
|2 Crossref
|u Ueda, K. et al. Experimental signatures of a versatile Weyl semimetal in a pyrochlore iridate with spin-ice-like magnetic orders. Phys. Rev. B 105, L161102 (2022).
|t Phys. Rev. B
|v 105
|y 2022
999 C 5 |a 10.1103/PhysRevB.89.075127
|9 -- missing cx lookup --
|1 K Ueda
|p 075127 -
|2 Crossref
|u Ueda, K. et al. Anomalous domain-wall conductance in pyrochlore-type Nd2Ir2O7 on the verge of the metal-insulator transition. Phys. Rev. B 89, 075127 (2014).
|t Phys. Rev. B
|v 89
|y 2014
999 C 5 |a 10.1063/1.4907734
|9 -- missing cx lookup --
|1 Z Hiroi
|p 041501 -
|2 Crossref
|u Hiroi, Z., Yamaura, J., Hirose, T., Nagashima, I. & Okamoto, Y. Lifshitz metal–insulator transition induced by the all-in/all-out magnetic order in the pyrochlore oxide Cd2Os2O7. APL Mater. 3, 041501 (2015).
|t APL Mater.
|v 3
|y 2015
999 C 5 |a 10.1103/PhysRevLett.108.247204
|9 -- missing cx lookup --
|1 H Shinaoka
|p 247204 -
|2 Crossref
|u Shinaoka, H., Miyake, T. & Ishibashi, S. Noncollinear magnetism and spin-orbit coupling in pyrochlore oxide Cd2Os2O7. Phys. Rev. Lett. 108, 247204 (2012).
|t Phys. Rev. Lett.
|v 108
|y 2012
999 C 5 |a 10.1016/j.materresbull.2006.08.011
|9 -- missing cx lookup --
|1 JN Millican
|p 928 -
|2 Crossref
|u Millican, J. N. et al. Crystal growth and structure of R2Ir2O7 (R=Pr, Eu) using molten KF. Mater. Res. Bull. 42, 928 (2007).
|t Mater. Res. Bull.
|v 42
|y 2007
999 C 5 |a 10.1088/0022-3735/22/11/004
|9 -- missing cx lookup --
|1 D Dunstan
|p 913 -
|2 Crossref
|u Dunstan, D. & Spain, I. Technology of diamond anvil high-pressure cells: I. Principles, design and construction. J. Phys. E: Sci. Instrum. 22, 913 (1989).
|t J. Phys. E: Sci. Instrum.
|v 22
|y 1989
999 C 5 |a 10.1088/0022-3735/22/11/005
|9 -- missing cx lookup --
|1 I Spain
|p 923 -
|2 Crossref
|u Spain, I. & Dunstan, D. The technology of diamond anvil high-pressure cells: II. Operation and use. J. Phys. E: Sci. Instrum. 22, 923 (1989).
|t J. Phys. E: Sci. Instrum.
|v 22
|y 1989
999 C 5 |a 10.1063/1.3265992
|9 -- missing cx lookup --
|1 N Tateiwa
|p 123901 -
|2 Crossref
|u Tateiwa, N. & Haga, Y. Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell. Rev. Sci. Instr. 80, 123901 (2009).
|t Rev. Sci. Instr.
|v 80
|y 2009
999 C 5 |a 10.1029/JB091iB05p04673
|9 -- missing cx lookup --
|1 H Mao
|p 4673 -
|2 Crossref
|u Mao, H., Xu, J. & Bell, P. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673 (1986).
|t J. Geophys. Res.
|v 91
|y 1986


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21