Home > Publications database > Computed tomography imaging analysis of a fused filament fabrication (FFF) 3D printed neck-thyroid phantom for multidisciplinary purposes > print |
001 | 619089 | ||
005 | 20250723173048.0 | ||
024 | 7 | _ | |a 10.1016/j.radphyschem.2024.112103 |2 doi |
024 | 7 | _ | |a 0969-806X |2 ISSN |
024 | 7 | _ | |a 1359-0197 |2 ISSN |
024 | 7 | _ | |a 1878-1020 |2 ISSN |
024 | 7 | _ | |a 1879-0895 |2 ISSN |
024 | 7 | _ | |a WOS:001300362900001 |2 WOS |
024 | 7 | _ | |a openalex:W4401236737 |2 openalex |
037 | _ | _ | |a PUBDB-2024-07376 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Villani, Daniel |0 P:(DE-H253)PIP1105882 |b 0 |e Corresponding author |
245 | _ | _ | |a Computed tomography imaging analysis of a fused filament fabrication (FFF) 3D printed neck-thyroid phantom for multidisciplinary purposes |
260 | _ | _ | |a New York |c 2024 |b Pergamon Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1733825534_1926511 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a ISSN 0969-806X not unique: **3 hits**. Waiting for fulltext |
520 | _ | _ | |a The application of the 3D printing technique for the development of low-cost phantoms is being investigatedrecently and requires a complex study of the interaction of printed materials with different types and qualities ofradiation, as well as the characterization of printing filaments to correctly simulate human tissue attenuation.This study aims to present the Computed Tomography (CT) Imaging analysis of a fused filament fabrication (FFF)3D printed anthropomorphic neck-thyroid phantom. The commercial phantom ATOM MAX 711 from CIRS wasused as anatomy of reference for the 3D modeling base of the neck-thyroid phantom. Commercially available PLAand ABS XCT-A validated at IPEN were used in the 3D printing process in order to simulate soft and bone tissuesrespectively. The printing process was done using the RAISE3D PRO 2 FFF printer from IPEN. The imaging studyof the phantom was performed through the analysis of images from a CT acquisition, comparing the HounsfieldUnits (HU) numbers of the tissues between both CIRS and 3D printed phantoms. The developed phantom is afeasible alternative and presents some desirable characteristics for applications in radiation protection, measurements of radioisotopes incorporated in the thyroid (both contamination counters and nuclear medicinedetectors) and training of techniques of acquisition of images with X rays. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
542 | _ | _ | |i 2024-11-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2024-11-01 |2 Crossref |u https://www.elsevier.com/legal/tdmrep-license |
542 | _ | _ | |i 2024-11-01 |2 Crossref |u https://doi.org/10.15223/policy-017 |
542 | _ | _ | |i 2024-11-01 |2 Crossref |u https://doi.org/10.15223/policy-037 |
542 | _ | _ | |i 2024-11-01 |2 Crossref |u https://doi.org/10.15223/policy-012 |
542 | _ | _ | |i 2024-11-01 |2 Crossref |u https://doi.org/10.15223/policy-029 |
542 | _ | _ | |i 2024-11-01 |2 Crossref |u https://doi.org/10.15223/policy-004 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-H253)PITZ-20150101 |5 EXP:(DE-H253)PITZ-20150101 |e Photo Injector Test Facility |x 0 |
700 | 1 | _ | |a Savi, M. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Rodrigues, Ariano |0 P:(DE-H253)PIP1100446 |b 2 |
700 | 1 | _ | |a Potiens, M. P. A. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Campos, Carlos |0 P:(DE-H253)PIP1104965 |b 4 |
773 | 1 | 8 | |a 10.1016/j.radphyschem.2024.112103 |b Elsevier BV |d 2024-11-01 |p 112103 |3 journal-article |2 Crossref |t Radiation Physics and Chemistry |v 224 |y 2024 |x 0969-806X |
773 | _ | _ | |a 10.1016/j.radphyschem.2024.112103 |g Vol. 224, p. 112103 - |0 PERI:(DE-600)3161238-6 |p 112103 |t International journal of radiation, applications and instrumentation / Part C |v 224 |y 2024 |x 0969-806X |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619089/files/1-s2.0-S0969806X24005954-main.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619089/files/1-s2.0-S0969806X24005954-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:619089 |p VDB |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1105882 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1105882 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1100446 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1104965 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-10 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b RADIAT PHYS CHEM : 2022 |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-10 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-10 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-10 |
920 | 1 | _ | |0 I:(DE-H253)Z_PITZ-20210408 |k Z_PITZ |l Technologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)Z_PITZ-20210408 |
980 | _ | _ | |a UNRESTRICTED |
999 | C | 5 | |y 2005 |2 Crossref |o 2005 |
999 | C | 5 | |a 10.1016/j.pacs.2017.02.001 |9 -- missing cx lookup -- |1 Arconada-Alvarez |p 17 - |2 Crossref |t Photoacoustics |v 5 |y 2017 |
999 | C | 5 | |a 10.1016/j.radphyschem.2012.12.038 |9 -- missing cx lookup -- |1 Cerqueira |p 174 - |2 Crossref |t Radiat. Phys. Chem. |v 95 |y 2014 |
999 | C | 5 | |1 Daskalov |y 2019 |2 Crossref |o Daskalov 2019 |
999 | C | 5 | |a 10.1002/mp.12790 |9 -- missing cx lookup -- |1 Diamantopoulos |p 1708 - |2 Crossref |t Med. Phys. |v 45 |y 2018 |
999 | C | 5 | |a 10.1088/1361-6560/ab0670 |1 Esposito |9 -- missing cx lookup -- |2 Crossref |t Phys. Med. Biol. |v 64 |y 2019 |
999 | C | 5 | |1 Feradov |y 2019 |2 Crossref |o Feradov 2019 |
999 | C | 5 | |a 10.1002/mp.13058 |9 -- missing cx lookup -- |1 Filippou |p e740 - |2 Crossref |t Med. Phys. |v 45 |y 2018 |
999 | C | 5 | |1 Goldstone |y 1989 |2 Crossref |o Goldstone 1989 |
999 | C | 5 | |a 10.1002/acm2.12278 |9 -- missing cx lookup -- |1 Hamedani |p 317 - |2 Crossref |t J. Appl. Clin. Med. Phys. |v 19 |y 2018 |
999 | C | 5 | |y 2007 |2 Crossref |o 2007 |
999 | C | 5 | |a 10.1148/radiol.221257 |1 Koetzier |9 -- missing cx lookup -- |2 Crossref |t Radiology |v 306 |y 2023 |
999 | C | 5 | |a 10.1002/acm2.12574 |9 -- missing cx lookup -- |1 Ogden |p 127 - |2 Crossref |t J. Appl. Clin. Med. Phys. |v 20 |y 2019 |
999 | C | 5 | |a 10.1016/j.radphyschem.2021.109726 |1 Pereira |9 -- missing cx lookup -- |2 Crossref |t Radiat. Phys. Chem. |v 189 |y 2021 |
999 | C | 5 | |a 10.1016/j.radphyschem.2022.110292 |1 Pereira |9 -- missing cx lookup -- |2 Crossref |t Radiat. Phys. Chem. |v 199 |y 2022 |
999 | C | 5 | |a 10.1016/j.radphyschem.2020.108906 |1 Savi |9 -- missing cx lookup -- |2 Crossref |t Radiat. Phys. Chem. |v 174 |y 2020 |
999 | C | 5 | |a 10.1016/j.radphyschem.2021.109365 |1 Savi |9 -- missing cx lookup -- |2 Crossref |t Radiat. Phys. Chem. |v 182 |y 2021 |
999 | C | 5 | |a 10.15392/bjrs.v10i1.1739 |1 Savi |9 -- missing cx lookup -- |2 Crossref |t Brazilian Journal of Radiation Sciences |v 10 |y 2022 |
999 | C | 5 | |a 10.1016/j.radphyschem.2020.108728 |1 Villani |9 -- missing cx lookup -- |2 Crossref |t Radiat. Phys. Chem. |v 172 |y 2020 |
999 | C | 5 | |a 10.1016/J.ENG.2017.05.013 |9 -- missing cx lookup -- |1 Wang |p 653 - |2 Crossref |t Engineering |v 3 |y 2017 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|