001     619089
005     20250723173048.0
024 7 _ |a 10.1016/j.radphyschem.2024.112103
|2 doi
024 7 _ |a 0969-806X
|2 ISSN
024 7 _ |a 1359-0197
|2 ISSN
024 7 _ |a 1878-1020
|2 ISSN
024 7 _ |a 1879-0895
|2 ISSN
024 7 _ |a WOS:001300362900001
|2 WOS
024 7 _ |a openalex:W4401236737
|2 openalex
037 _ _ |a PUBDB-2024-07376
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Villani, Daniel
|0 P:(DE-H253)PIP1105882
|b 0
|e Corresponding author
245 _ _ |a Computed tomography imaging analysis of a fused filament fabrication (FFF) 3D printed neck-thyroid phantom for multidisciplinary purposes
260 _ _ |a New York
|c 2024
|b Pergamon Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1733825534_1926511
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 0969-806X not unique: **3 hits**. Waiting for fulltext
520 _ _ |a The application of the 3D printing technique for the development of low-cost phantoms is being investigatedrecently and requires a complex study of the interaction of printed materials with different types and qualities ofradiation, as well as the characterization of printing filaments to correctly simulate human tissue attenuation.This study aims to present the Computed Tomography (CT) Imaging analysis of a fused filament fabrication (FFF)3D printed anthropomorphic neck-thyroid phantom. The commercial phantom ATOM MAX 711 from CIRS wasused as anatomy of reference for the 3D modeling base of the neck-thyroid phantom. Commercially available PLAand ABS XCT-A validated at IPEN were used in the 3D printing process in order to simulate soft and bone tissuesrespectively. The printing process was done using the RAISE3D PRO 2 FFF printer from IPEN. The imaging studyof the phantom was performed through the analysis of images from a CT acquisition, comparing the HounsfieldUnits (HU) numbers of the tissues between both CIRS and 3D printed phantoms. The developed phantom is afeasible alternative and presents some desirable characteristics for applications in radiation protection, measurements of radioisotopes incorporated in the thyroid (both contamination counters and nuclear medicinedetectors) and training of techniques of acquisition of images with X rays.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
542 _ _ |i 2024-11-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2024-11-01
|2 Crossref
|u https://www.elsevier.com/legal/tdmrep-license
542 _ _ |i 2024-11-01
|2 Crossref
|u https://doi.org/10.15223/policy-017
542 _ _ |i 2024-11-01
|2 Crossref
|u https://doi.org/10.15223/policy-037
542 _ _ |i 2024-11-01
|2 Crossref
|u https://doi.org/10.15223/policy-012
542 _ _ |i 2024-11-01
|2 Crossref
|u https://doi.org/10.15223/policy-029
542 _ _ |i 2024-11-01
|2 Crossref
|u https://doi.org/10.15223/policy-004
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-H253)PITZ-20150101
|5 EXP:(DE-H253)PITZ-20150101
|e Photo Injector Test Facility
|x 0
700 1 _ |a Savi, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rodrigues, Ariano
|0 P:(DE-H253)PIP1100446
|b 2
700 1 _ |a Potiens, M. P. A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Campos, Carlos
|0 P:(DE-H253)PIP1104965
|b 4
773 1 8 |a 10.1016/j.radphyschem.2024.112103
|b Elsevier BV
|d 2024-11-01
|p 112103
|3 journal-article
|2 Crossref
|t Radiation Physics and Chemistry
|v 224
|y 2024
|x 0969-806X
773 _ _ |a 10.1016/j.radphyschem.2024.112103
|g Vol. 224, p. 112103 -
|0 PERI:(DE-600)3161238-6
|p 112103
|t International journal of radiation, applications and instrumentation / Part C
|v 224
|y 2024
|x 0969-806X
856 4 _ |u https://bib-pubdb1.desy.de/record/619089/files/1-s2.0-S0969806X24005954-main.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/619089/files/1-s2.0-S0969806X24005954-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:619089
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1105882
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1105882
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1100446
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1104965
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2024
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIAT PHYS CHEM : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
920 1 _ |0 I:(DE-H253)Z_PITZ-20210408
|k Z_PITZ
|l Technologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)Z_PITZ-20210408
980 _ _ |a UNRESTRICTED
999 C 5 |y 2005
|2 Crossref
|o 2005
999 C 5 |a 10.1016/j.pacs.2017.02.001
|9 -- missing cx lookup --
|1 Arconada-Alvarez
|p 17 -
|2 Crossref
|t Photoacoustics
|v 5
|y 2017
999 C 5 |a 10.1016/j.radphyschem.2012.12.038
|9 -- missing cx lookup --
|1 Cerqueira
|p 174 -
|2 Crossref
|t Radiat. Phys. Chem.
|v 95
|y 2014
999 C 5 |1 Daskalov
|y 2019
|2 Crossref
|o Daskalov 2019
999 C 5 |a 10.1002/mp.12790
|9 -- missing cx lookup --
|1 Diamantopoulos
|p 1708 -
|2 Crossref
|t Med. Phys.
|v 45
|y 2018
999 C 5 |a 10.1088/1361-6560/ab0670
|1 Esposito
|9 -- missing cx lookup --
|2 Crossref
|t Phys. Med. Biol.
|v 64
|y 2019
999 C 5 |1 Feradov
|y 2019
|2 Crossref
|o Feradov 2019
999 C 5 |a 10.1002/mp.13058
|9 -- missing cx lookup --
|1 Filippou
|p e740 -
|2 Crossref
|t Med. Phys.
|v 45
|y 2018
999 C 5 |1 Goldstone
|y 1989
|2 Crossref
|o Goldstone 1989
999 C 5 |a 10.1002/acm2.12278
|9 -- missing cx lookup --
|1 Hamedani
|p 317 -
|2 Crossref
|t J. Appl. Clin. Med. Phys.
|v 19
|y 2018
999 C 5 |y 2007
|2 Crossref
|o 2007
999 C 5 |a 10.1148/radiol.221257
|1 Koetzier
|9 -- missing cx lookup --
|2 Crossref
|t Radiology
|v 306
|y 2023
999 C 5 |a 10.1002/acm2.12574
|9 -- missing cx lookup --
|1 Ogden
|p 127 -
|2 Crossref
|t J. Appl. Clin. Med. Phys.
|v 20
|y 2019
999 C 5 |a 10.1016/j.radphyschem.2021.109726
|1 Pereira
|9 -- missing cx lookup --
|2 Crossref
|t Radiat. Phys. Chem.
|v 189
|y 2021
999 C 5 |a 10.1016/j.radphyschem.2022.110292
|1 Pereira
|9 -- missing cx lookup --
|2 Crossref
|t Radiat. Phys. Chem.
|v 199
|y 2022
999 C 5 |a 10.1016/j.radphyschem.2020.108906
|1 Savi
|9 -- missing cx lookup --
|2 Crossref
|t Radiat. Phys. Chem.
|v 174
|y 2020
999 C 5 |a 10.1016/j.radphyschem.2021.109365
|1 Savi
|9 -- missing cx lookup --
|2 Crossref
|t Radiat. Phys. Chem.
|v 182
|y 2021
999 C 5 |a 10.15392/bjrs.v10i1.1739
|1 Savi
|9 -- missing cx lookup --
|2 Crossref
|t Brazilian Journal of Radiation Sciences
|v 10
|y 2022
999 C 5 |a 10.1016/j.radphyschem.2020.108728
|1 Villani
|9 -- missing cx lookup --
|2 Crossref
|t Radiat. Phys. Chem.
|v 172
|y 2020
999 C 5 |a 10.1016/J.ENG.2017.05.013
|9 -- missing cx lookup --
|1 Wang
|p 653 -
|2 Crossref
|t Engineering
|v 3
|y 2017


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21