001     619085
005     20250721115940.0
024 7 _ |a 10.1002/chem.202403665
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-07372
|2 datacite_doi
024 7 _ |a altmetric:174264471
|2 altmetric
024 7 _ |a pmid:39757128
|2 pmid
024 7 _ |a WOS:001401184000001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4406077447
037 _ _ |a PUBDB-2024-07372
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Leroux, Juliette
|0 P:(DE-H253)PIP1096604
|b 0
|e Corresponding author
245 _ _ |a Structures of Gas-Phase Hydrated Phosphotyrosine Revealed by Soft X-ray Action Spectroscopy
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742904091_940677
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a SectionsPDFToolsShareGraphical AbstractGas-phase near-edge X-ray absorption mass spectrometry (NEXAMS) reveals the effects of a single water molecule on protonated phosphotyrosine at the carbon and oxygen K-edges. The water molecule bonds with the phosphate group, altering the spectral features. Comparisons with density functional theory calculations identify three potential hydrated structures.Description unavailableAbstractGas-phase near-edge X-ray absorption mass spectrometry (NEXAMS) was employed at the carbon and oxygen K-edges to probe the influence of a single water molecule on the protonated phosphotyrosine molecule. The results of the photodissociation experiments revealed that the water molecule forms two bonds, with the phosphate group and another chemical group. By comparing the NEXAMS spectra at the carbon and oxygen K-edges with density functional theory calculations, we attributed the electronic transitions responsible for the observed resonances, especially the transitions due to the presence of the water molecule. We showed that the water molecule leads to a specific spectral feature in the partial ion yield of hydrated fragments at 536.4 eV. Moreover, comparing the NEXAMS spectra with the calculated structures allowed us to identify three possible structures for singly hydrated phosphotyrosine that agree with the observed fragmentation and resonances.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20230427 (I-20230427)
|0 G:(DE-H253)I-20230427
|c I-20230427
|x 1
536 _ _ |a DFG project G:(GEPRIS)509471550 - Dynamik photoionisations-induzierter Prozesse in laser-präparierten Molekülen in der Gasphase und der wässrigen Phase (509471550)
|0 G:(GEPRIS)509471550
|c 509471550
|x 2
536 _ _ |a AIM, DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 3
536 _ _ |a HIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter (2019_IVF-HIDSS-0002)
|0 G:(DE-HGF)2019_IVF-HIDSS-0002
|c 2019_IVF-HIDSS-0002
|x 4
693 _ _ |a PETRA III
|f PETRA Beamline P04
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P04-20150101
|6 EXP:(DE-H253)P-P04-20150101
|x 0
700 1 _ |a Chesnel, Jean-Yves
|0 P:(DE-H253)PIP1105086
|b 1
700 1 _ |a Ortiz-Mahecha, Carlos
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nair, Aarathi
|0 P:(DE-H253)PIP1101859
|b 3
700 1 _ |a Oostenrijk, Bart Hendrik
|0 P:(DE-H253)PIP1028382
|b 4
700 1 _ |a Pille, Laura
|0 P:(DE-H253)PIP1096578
|b 5
700 1 _ |a Trinter, Florian
|0 P:(DE-H253)PIP1017364
|b 6
700 1 _ |a Schwob, Lucas
|0 P:(DE-H253)PIP1033236
|b 7
700 1 _ |a Bari, Sadia
|0 P:(DE-H253)PIP1014119
|b 8
|e Corresponding author
773 _ _ |a 10.1002/chem.202403665
|0 PERI:(DE-600)1478547-X
|n 10
|p e202403665
|t Chemistry - a European journal
|v 31
|y 2025
|x 0947-6539
856 4 _ |u https://bib-pubdb1.desy.de/record/619085/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/619085/files/Leroux_2024_Internal%20Review_Erk.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/619085/files/Oable%20-%20The%20Open%20Access%20Cockpit.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/619085/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/619085/files/Rechnung%205822908%2019.02.2025_250219141009.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/619085/files/Chemistry%20A%20European%20J%20-%202025%20-%20Leroux%20-%20Structures%20of%20Gas%E2%80%90Phase%20Hydrated%20Phosphotyrosine%20Revealed%20by%20Soft%20X%E2%80%90ray%20Action.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/619085/files/Leroux_2024_Internal%20Review_Erk.pdf?subformat=pdfa
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/619085/files/Leroux_SI_Structures%20of%20gas-phase%20phosphotyrosine.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/619085/files/Oable%20-%20The%20Open%20Access%20Cockpit.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/619085/files/Rechnung%205822908%2019.02.2025_250219141009.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/619085/files/Chemistry%20A%20European%20J%20-%202025%20-%20Leroux%20-%20Structures%20of%20Gas%E2%80%90Phase%20Hydrated%20Phosphotyrosine%20Revealed%20by%20Soft%20X%E2%80%90ray%20Action.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/619085/files/Leroux_SI_Structures%20of%20gas-phase%20phosphotyrosine.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:619085
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1096604
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1105086
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1101859
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1028382
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1028382
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1096578
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1096578
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1017364
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1033236
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1033236
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1014119
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM-EUR J : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-H253)FS-BIG-20220318
|k FS-BIG
|l Biomoleküle in Gasphase
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-BIG-20220318
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21