Home > Publications database > Structures of Gas-Phase Hydrated Phosphotyrosine Revealed by Soft X-ray Action Spectroscopy > print |
001 | 619085 | ||
005 | 20250721115940.0 | ||
024 | 7 | _ | |a 10.1002/chem.202403665 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-07372 |2 datacite_doi |
024 | 7 | _ | |a altmetric:174264471 |2 altmetric |
024 | 7 | _ | |a pmid:39757128 |2 pmid |
024 | 7 | _ | |a WOS:001401184000001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4406077447 |
037 | _ | _ | |a PUBDB-2024-07372 |
041 | _ | _ | |a English |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Leroux, Juliette |0 P:(DE-H253)PIP1096604 |b 0 |e Corresponding author |
245 | _ | _ | |a Structures of Gas-Phase Hydrated Phosphotyrosine Revealed by Soft X-ray Action Spectroscopy |
260 | _ | _ | |a Weinheim |c 2025 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1742904091_940677 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a SectionsPDFToolsShareGraphical AbstractGas-phase near-edge X-ray absorption mass spectrometry (NEXAMS) reveals the effects of a single water molecule on protonated phosphotyrosine at the carbon and oxygen K-edges. The water molecule bonds with the phosphate group, altering the spectral features. Comparisons with density functional theory calculations identify three potential hydrated structures.Description unavailableAbstractGas-phase near-edge X-ray absorption mass spectrometry (NEXAMS) was employed at the carbon and oxygen K-edges to probe the influence of a single water molecule on the protonated phosphotyrosine molecule. The results of the photodissociation experiments revealed that the water molecule forms two bonds, with the phosphate group and another chemical group. By comparing the NEXAMS spectra at the carbon and oxygen K-edges with density functional theory calculations, we attributed the electronic transitions responsible for the observed resonances, especially the transitions due to the presence of the water molecule. We showed that the water molecule leads to a specific spectral feature in the partial ion yield of hydrated fragments at 536.4 eV. Moreover, comparing the NEXAMS spectra with the calculated structures allowed us to identify three possible structures for singly hydrated phosphotyrosine that agree with the observed fragmentation and resonances. |
536 | _ | _ | |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) |0 G:(DE-HGF)POF4-633 |c POF4-633 |f POF IV |x 0 |
536 | _ | _ | |a FS-Proposal: I-20230427 (I-20230427) |0 G:(DE-H253)I-20230427 |c I-20230427 |x 1 |
536 | _ | _ | |a DFG project G:(GEPRIS)509471550 - Dynamik photoionisations-induzierter Prozesse in laser-präparierten Molekülen in der Gasphase und der wässrigen Phase (509471550) |0 G:(GEPRIS)509471550 |c 509471550 |x 2 |
536 | _ | _ | |a AIM, DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994) |0 G:(GEPRIS)390715994 |c 390715994 |x 3 |
536 | _ | _ | |a HIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter (2019_IVF-HIDSS-0002) |0 G:(DE-HGF)2019_IVF-HIDSS-0002 |c 2019_IVF-HIDSS-0002 |x 4 |
693 | _ | _ | |a PETRA III |f PETRA Beamline P04 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P04-20150101 |6 EXP:(DE-H253)P-P04-20150101 |x 0 |
700 | 1 | _ | |a Chesnel, Jean-Yves |0 P:(DE-H253)PIP1105086 |b 1 |
700 | 1 | _ | |a Ortiz-Mahecha, Carlos |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Nair, Aarathi |0 P:(DE-H253)PIP1101859 |b 3 |
700 | 1 | _ | |a Oostenrijk, Bart Hendrik |0 P:(DE-H253)PIP1028382 |b 4 |
700 | 1 | _ | |a Pille, Laura |0 P:(DE-H253)PIP1096578 |b 5 |
700 | 1 | _ | |a Trinter, Florian |0 P:(DE-H253)PIP1017364 |b 6 |
700 | 1 | _ | |a Schwob, Lucas |0 P:(DE-H253)PIP1033236 |b 7 |
700 | 1 | _ | |a Bari, Sadia |0 P:(DE-H253)PIP1014119 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1002/chem.202403665 |0 PERI:(DE-600)1478547-X |n 10 |p e202403665 |t Chemistry - a European journal |v 31 |y 2025 |x 0947-6539 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619085/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619085/files/Leroux_2024_Internal%20Review_Erk.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619085/files/Oable%20-%20The%20Open%20Access%20Cockpit.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619085/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/619085/files/Rechnung%205822908%2019.02.2025_250219141009.pdf |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/619085/files/Chemistry%20A%20European%20J%20-%202025%20-%20Leroux%20-%20Structures%20of%20Gas%E2%80%90Phase%20Hydrated%20Phosphotyrosine%20Revealed%20by%20Soft%20X%E2%80%90ray%20Action.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/619085/files/Leroux_2024_Internal%20Review_Erk.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/619085/files/Leroux_SI_Structures%20of%20gas-phase%20phosphotyrosine.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/619085/files/Oable%20-%20The%20Open%20Access%20Cockpit.pdf?subformat=pdfa |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/619085/files/Rechnung%205822908%2019.02.2025_250219141009.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/619085/files/Chemistry%20A%20European%20J%20-%202025%20-%20Leroux%20-%20Structures%20of%20Gas%E2%80%90Phase%20Hydrated%20Phosphotyrosine%20Revealed%20by%20Soft%20X%E2%80%90ray%20Action.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/619085/files/Leroux_SI_Structures%20of%20gas-phase%20phosphotyrosine.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:619085 |p openaire |p open_access |p OpenAPC |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1096604 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1105086 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1101859 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1028382 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1028382 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1096578 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1096578 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 6 |6 P:(DE-H253)PIP1017364 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1017364 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1033236 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 7 |6 P:(DE-H253)PIP1033236 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1014119 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-633 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Life Sciences – Building Blocks of Life: Structure and Function |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2025-01-02 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2025-01-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM-EUR J : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2025-01-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | 1 | _ | |0 I:(DE-H253)FS-BIG-20220318 |k FS-BIG |l Biomoleküle in Gasphase |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-BIG-20220318 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|