001     619029
005     20251014151306.0
024 7 _ |a 10.1515/auto-2024-0170
|2 doi
024 7 _ |a 0178-2312
|2 ISSN
024 7 _ |a 0340-434X
|2 ISSN
024 7 _ |a 2196-677X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-07329
|2 datacite_doi
024 7 _ |2 openalex
|a openalex:W4410881984
037 _ _ |a PUBDB-2024-07329
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Hespe, Christian
|0 P:(DE-H253)PIP1110811
|b 0
|e Corresponding author
245 _ _ |a Data-Driven Feedback Optimization for Particle Accelerator Application
260 _ _ |a Berlin
|c 2025
|b De Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751622812_2352373
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a EuXFEL R&D project “RP-513: Learning Based Methods”
520 _ _ |a For many engineering problems involving control systems, finding a good working point for steady-state operation is crucial. Therefore, this paper presents an application of steady-state optimization with feedback on particle accelerators, specifically the European X-ray free-electron laser. In simulation studies, we demonstrate that feedback optimization is able to reach a near-optimal steady-state operation in the presence of uncertainties, even without relying on a priori known model information but purely data-driven through input-output measurements. Additionally, we discuss the importance of including second-order information in the optimization to ensure a satisfactory convergence speed and propose an approximated Hessian representation for problems without second-order knowledge on the plant.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a XFEL
|e Facility (machine) XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL(machine)-20150101
|5 EXP:(DE-H253)XFEL(machine)-20150101
|x 0
700 1 _ |a Kaiser, Jan
|0 P:(DE-H253)PIP1095111
|b 1
700 1 _ |a Luebsen, Jannis
|0 P:(DE-H253)PIP1099816
|b 2
700 1 _ |a Mayet, Frank
|0 P:(DE-H253)PIP1014786
|b 3
700 1 _ |a Scholz, Matthias
|0 P:(DE-H253)PIP1012553
|b 4
700 1 _ |a Eichler, Annika
|0 P:(DE-H253)PIP1087213
|b 5
770 _ _ |a Data-Driven and Learning-Based Control – Perspectives and Prospects
773 _ _ |a 10.1515/auto-2024-0170
|g Vol. 73, no. 6, p. 429 - 440
|0 PERI:(DE-600)2027287-X
|n 6
|p 429 - 440
|t Automatisierungstechnik
|v 73
|y 2025
|x 0178-2312
856 4 _ |u https://bib-pubdb1.desy.de/record/619029/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/619029/files/Invoice.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/619029/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/619029/files/10.1515_auto-2024-0170.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/619029/files/Invoice.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/619029/files/10.1515_auto-2024-0170.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:619029
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1110811
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1095111
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1099816
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1014786
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1012553
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1087213
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1087213
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AT-AUTOM : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 0
920 1 _ |0 I:(DE-H253)MXL-20160301
|k MXL
|l Koordination des XFEL-Beschleunigers
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MSK-20120731
980 _ _ |a I:(DE-H253)MXL-20160301
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21