001     619000
005     20250723173023.0
024 7 _ |a 10.1021/acs.jpcb.4c02469
|2 doi
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a altmetric:165371023
|2 altmetric
024 7 _ |a pmid:38960927
|2 pmid
024 7 _ |a WOS:001265062300001
|2 WOS
024 7 _ |a openalex:W4400330797
|2 openalex
037 _ _ |a PUBDB-2024-07310
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Srivatsav, Aswin T.
|0 0000-0003-4218-8585
|b 0
245 _ _ |a Residual Membrane Fluidity in Mycobacterial Cell Envelope Layers under Extreme Conditions Underlines Membrane-Centric Adaptation
260 _ _ |a Washington, DC
|c 2024
|b Americal Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736935923_3867670
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a One of the routes for adaptation to extreme environments is via remodeling of cell membrane structure, composition, and biophysical properties rendering a functional membrane. Collective studies suggest some form of membrane feedback in mycobacterial species that harbor complex lipids within the outer and inner cell wall layers. Here, we study the homeostatic membrane landscape of mycobacteria in response to high hydrostatic pressure and temperature triggers using high pressure fluorescence, mass and infrared spectroscopies, NMR, SAXS, and molecular dynamics simulations. Our findings reveal that mycobacterial membrane possesses unique and lipid-specific pressure-induced signatures that attenuate progression to highly ordered phases. Both inner and outer membrane layers exhibit phase coexistence of nearly identical lipid phases keeping residual fluidity over a wide range of temperature and pressure, but with different sensitivities. Lipidomic analysis of bacteria grown under pressure revealed lipidome remodeling in terms of chain length, unsaturation, and specific long-chained characteristic mycobacterial lipids, rendering a fluid bacterial membrane. These findings could help understand how bacteria may adapt to a broad spectrum of harsh environments by modulating their lipidome to select lipids that enable the maintenance of a fluid functional cell envelope.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390677874 - EXC 2033: RESOLV (Ruhr Explores Solvation) (390677874)
|0 G:(GEPRIS)390677874
|c 390677874
|x 1
542 _ _ |i 2024-07-03
|2 Crossref
|u https://doi.org/10.15223/policy-029
542 _ _ |i 2024-07-03
|2 Crossref
|u https://doi.org/10.15223/policy-037
542 _ _ |i 2024-07-03
|2 Crossref
|u https://doi.org/10.15223/policy-045
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P12
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P12-20150101
|6 EXP:(DE-H253)P-P12-20150101
|x 0
700 1 _ |a Liang, Kuan
|b 1
700 1 _ |a Jaworek, Michel W.
|b 2
700 1 _ |a Dong, Wanqian
|b 3
700 1 _ |a Matsuo, Tatsuhito
|b 4
700 1 _ |a Grélard, Axelle
|b 5
700 1 _ |a Peters, Judith
|0 0000-0001-5151-7710
|b 6
700 1 _ |a Winter, Roland
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Duan, Mojie
|0 0000-0002-5496-832X
|b 8
|e Corresponding author
700 1 _ |a Kapoor, Shobhna
|0 0000-0003-3684-4312
|b 9
|e Corresponding author
773 1 8 |a 10.1021/acs.jpcb.4c02469
|b American Chemical Society (ACS)
|d 2024-07-03
|n 28
|p 6838-6852
|3 journal-article
|2 Crossref
|t The Journal of Physical Chemistry B
|v 128
|y 2024
|x 1520-6106
773 _ _ |a 10.1021/acs.jpcb.4c02469
|g Vol. 128, no. 28, p. 6838 - 6852
|0 PERI:(DE-600)2006039-7
|n 28
|p 6838-6852
|t The journal of physical chemistry / B
|v 128
|y 2024
|x 1520-6106
856 4 _ |u https://pubs.acs.org/doi/10.1021/acs.jpcb.4c02469
856 4 _ |u https://bib-pubdb1.desy.de/record/619000/files/Residual%20Membrane%20Fluidity%20in%20Mycobacterial%20Cell%20Envelope%20Layers%20under%20Extreme%20Conditions%20Underlines%20Membrane-Centric%20Adaptation.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/619000/files/Residual%20Membrane%20Fluidity%20in%20Mycobacterial%20Cell%20Envelope%20Layers%20under%20Extreme%20Conditions%20Underlines%20Membrane-Centric%20Adaptation.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:619000
|p VDB
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1038/nrm2335
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev.biophys.36.040306.132643
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nchembio.2372
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.biochem.5b01363
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nrm.2017.16
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.aao0076
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms2273
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-4157(90)90002-T
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.108102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rsta.2006.1844
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1529/biophysj.106.083766
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0006-3495(99)77197-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nsmb.1456
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/18/28/S01
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s42003-021-02178-y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.langmuir.0c00901
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s42004-021-00467-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bbamem.2019.183130
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/la801947v
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-642-16712-6_565
|p 1946 -
|1 Winter R.
|y 2013
|2 Crossref
|9 -- missing cx lookup --
999 C 5 |a 10.1007/978-94-017-9918-8_17
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.ppat.1000545
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1128/JB.180.4.801-808.1998
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1321205110
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3390/cells10092478
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-022-28562-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00253-013-5067-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1403078111
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1128/jb.178.2.456-461.1996
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/asia.202200146
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/sciadv.adh7957
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1112572108
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.chembiol.2011.10.013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1194/jlr.M010363
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1128/microbiolspec.MGM2-0033-2013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0009-2614(76)80392-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1366/0003702894203642
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s10973-020-09775-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S160057671500254X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/wcms.1121
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ci400172g
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bpj.2020.01.027
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1529/biophysj.107.123422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1096/fj.13-232843
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-4157(83)90015-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1096/fj.06-7809com
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0076-6879(95)59052-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.74.051913
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.accounts.0c00687
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.chemphyslip.2013.12.004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00894-019-3943-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0006-3495(00)76295-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-022-29272-x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nrm2330
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21