Home > Publications database > Chemically Accurate Potential Curves for H$_ 2$ Molecules Using Explicitly Correlated Qubit-ADAPT > print |
001 | 618894 | ||
005 | 20250723173010.0 | ||
024 | 7 | _ | |a 10.1021/acs.jctc.3c01281 |2 doi |
024 | 7 | _ | |a 1549-9618 |2 ISSN |
024 | 7 | _ | |a 1549-9626 |2 ISSN |
024 | 7 | _ | |a arXiv:2308.07259 |2 arXiv |
024 | 7 | _ | |a 38215397 |2 pmid |
024 | 7 | _ | |a WOS:001162285900001 |2 WOS |
024 | 7 | _ | |a openalex:W4390821798 |2 openalex |
037 | _ | _ | |a PUBDB-2024-07216 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
088 | _ | _ | |a arXiv:2308.07259 |2 arXiv |
100 | 1 | _ | |a Volkmann, Hakon |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Chemically Accurate Potential Curves for H$_ 2$ Molecules Using Explicitly Correlated Qubit-ADAPT |
260 | _ | _ | |a Washington, DC |c 2024 |b [Verlag nicht ermittelbar] |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1734704113_2229497 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Waiting for fulltext |
520 | _ | _ | |a With the recent advances in the development ofdevices capable of performing quantum computations, a growinginterest in finding near-term applications has emerged in manyareas of science. In the era of nonfault tolerant quantum devices,algorithms that only require comparably short circuits accom-panied by high repetition rates are considered to be a promisingapproach for assisting classical machines with finding a solution oncomputationally hard problems. The ADAPT approach previouslyintroduced in Nat. Commun. 10, 3007 (2019) extends the class ofvariational quantum eigensolver algorithms with dynamicallygrowing ansä tze in order to find approximations to the groundand excited state energies of molecules. In this work, the ADAPTalgorithm has been combined with a first-quantized formulation forthe hydrogen molecule in the Born−Oppenheimer approximation, employing the explicitly correlated basis functions introduced inJ. Chem. Phys. 43, 2429 (1965). By the virtue of their explicit electronic correlation properties, it is shown in classically performedsimulations that chemical accuracy (<1.6 mHa) can be reached for ground and excited state potential curves using reasonably shortcircuits. |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
536 | _ | _ | |a QUEST - QUantum computing for Excellence in Science and Technology (101087126) |0 G:(EU-Grant)101087126 |c 101087126 |f HORIZON-WIDERA-2022-TALENTS-01 |x 1 |
542 | _ | _ | |i 2024-01-12 |2 Crossref |u https://doi.org/10.15223/policy-029 |
542 | _ | _ | |i 2024-01-12 |2 Crossref |u https://doi.org/10.15223/policy-037 |
542 | _ | _ | |i 2024-01-12 |2 Crossref |u https://doi.org/10.15223/policy-045 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Sathyanarayanan, Raamamurthy |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Saenz, Alejandro |0 0009-0002-8886-2336 |b 2 |
700 | 1 | _ | |a Jansen, Karl |0 P:(DE-H253)PIP1003636 |b 3 |
700 | 1 | _ | |a Kuehn, Stefan |0 P:(DE-H253)PIP1086314 |b 4 |e Corresponding author |
773 | 1 | 8 | |a 10.1021/acs.jctc.3c01281 |b American Chemical Society (ACS) |d 2024-01-12 |n 3 |p 1244-1251 |3 journal-article |2 Crossref |t Journal of Chemical Theory and Computation |v 20 |y 2024 |x 1549-9618 |
773 | _ | _ | |a 10.1021/acs.jctc.3c01281 |g Vol. 20, no. 3, p. 1244 - 1251 |0 PERI:(DE-600)2166976-4 |n 3 |p 1244-1251 |t Journal of chemical theory and computation |v 20 |y 2024 |x 1549-9618 |
787 | 0 | _ | |a Volkmann, Hakon et.al. |d 2023 |i IsParent |0 PUBDB-2023-05073 |r arXiv:2308.07259 |t A qubit-ADAPT Implementation for H$_2$ Molecules using an Explicitly Correlated Basis |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/618894/files/volkmann-et-al-2024-chemically-accurate-potential-curves-for-h2-molecules-using-explicitly-correlated-qubit-adapt%20%281%29.pdf |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/618894/files/volkmann-et-al-2024-chemically-accurate-potential-curves-for-h2-molecules-using-explicitly-correlated-qubit-adapt%20%281%29.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:618894 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1003636 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1086314 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM THEORY COMPUT : 2022 |d 2024-12-12 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J CHEM THEORY COMPUT : 2022 |d 2024-12-12 |
920 | 1 | _ | |0 I:(DE-H253)CQTA-20221102 |k CQTA |l Centre f. Quantum Techno. a. Application |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CQTA-20221102 |
999 | C | 5 | |a 10.1038/s42254-021-00348-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.22331/q-2018-08-06-79 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.abb9811 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.48550/arXiv.1411.4028 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1098/rsta.2021.0062 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.106.114511 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/d1ra07451b |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.106.144426 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/srep03589 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms5213 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevX.8.031022 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41534-019-0187-2 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevResearch.4.033154 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.127.120502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.48550/ARXIV.2009.12472 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/qua.21198 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/2058-9565/aad3e4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF01331938 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1006/aphy.2002.6254 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature23879 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1367-2630/18/2/023023 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physrep.2022.08.003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/qute.201900070 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41467-018-07090-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41467-021-21728-w |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s42484-023-00118-z |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41467-019-10988-2 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41534-023-00681-0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PRXQuantum.2.020310 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s42979-022-01346-z |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.105.064317 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/cr200204r |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/D2CP00247G |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.22331/q-2023-06-12-1040 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0092-640X(70)80007-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s00214-011-1079-5 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1697142 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.22331/q-2019-07-01-156 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/D1CP02227J |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.106.032434 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.jctc.8b01004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PRXQuantum.3.020351 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0953-4075/37/20/005 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.11.1792 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1742457 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.jctc.2c00709 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevResearch.1.013006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.87.167902 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |2 Crossref |u Jones, E.; Travis, O.; Peterson, P. SciPy: Open Source Scientific Tools for Python, 2001. http://www.scipy.orgweb/ (accessed date 06/13/2023). |
999 | C | 5 | |a 10.1103/PhysRevA.64.052712 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0022-3700/20/23/010 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.71.2871 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.48550/arXiv.1811.04968 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/wcms.1340 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s42005-022-00982-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0022-2852(77)90050-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.48550/arXiv.1811.04968 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1666011 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |2 Crossref |u Grotendorst, J. Modern Methods and Algorithms of Quantum Chemistry; John von Neumann Institute for Computing: Jülich, 2000; Vol. 1, pp 153–201. |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|