001     618894
005     20250723173010.0
024 7 _ |a 10.1021/acs.jctc.3c01281
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a arXiv:2308.07259
|2 arXiv
024 7 _ |a 38215397
|2 pmid
024 7 _ |a WOS:001162285900001
|2 WOS
024 7 _ |a openalex:W4390821798
|2 openalex
037 _ _ |a PUBDB-2024-07216
041 _ _ |a English
082 _ _ |a 610
088 _ _ |a arXiv:2308.07259
|2 arXiv
100 1 _ |a Volkmann, Hakon
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Chemically Accurate Potential Curves for H$_ 2$ Molecules Using Explicitly Correlated Qubit-ADAPT
260 _ _ |a Washington, DC
|c 2024
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734704113_2229497
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a With the recent advances in the development ofdevices capable of performing quantum computations, a growinginterest in finding near-term applications has emerged in manyareas of science. In the era of nonfault tolerant quantum devices,algorithms that only require comparably short circuits accom-panied by high repetition rates are considered to be a promisingapproach for assisting classical machines with finding a solution oncomputationally hard problems. The ADAPT approach previouslyintroduced in Nat. Commun. 10, 3007 (2019) extends the class ofvariational quantum eigensolver algorithms with dynamicallygrowing ansä tze in order to find approximations to the groundand excited state energies of molecules. In this work, the ADAPTalgorithm has been combined with a first-quantized formulation forthe hydrogen molecule in the Born−Oppenheimer approximation, employing the explicitly correlated basis functions introduced inJ. Chem. Phys. 43, 2429 (1965). By the virtue of their explicit electronic correlation properties, it is shown in classically performedsimulations that chemical accuracy (<1.6 mHa) can be reached for ground and excited state potential curves using reasonably shortcircuits.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a QUEST - QUantum computing for Excellence in Science and Technology (101087126)
|0 G:(EU-Grant)101087126
|c 101087126
|f HORIZON-WIDERA-2022-TALENTS-01
|x 1
542 _ _ |i 2024-01-12
|2 Crossref
|u https://doi.org/10.15223/policy-029
542 _ _ |i 2024-01-12
|2 Crossref
|u https://doi.org/10.15223/policy-037
542 _ _ |i 2024-01-12
|2 Crossref
|u https://doi.org/10.15223/policy-045
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Sathyanarayanan, Raamamurthy
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Saenz, Alejandro
|0 0009-0002-8886-2336
|b 2
700 1 _ |a Jansen, Karl
|0 P:(DE-H253)PIP1003636
|b 3
700 1 _ |a Kuehn, Stefan
|0 P:(DE-H253)PIP1086314
|b 4
|e Corresponding author
773 1 8 |a 10.1021/acs.jctc.3c01281
|b American Chemical Society (ACS)
|d 2024-01-12
|n 3
|p 1244-1251
|3 journal-article
|2 Crossref
|t Journal of Chemical Theory and Computation
|v 20
|y 2024
|x 1549-9618
773 _ _ |a 10.1021/acs.jctc.3c01281
|g Vol. 20, no. 3, p. 1244 - 1251
|0 PERI:(DE-600)2166976-4
|n 3
|p 1244-1251
|t Journal of chemical theory and computation
|v 20
|y 2024
|x 1549-9618
787 0 _ |a Volkmann, Hakon et.al.
|d 2023
|i IsParent
|0 PUBDB-2023-05073
|r arXiv:2308.07259
|t A qubit-ADAPT Implementation for H$_2$ Molecules using an Explicitly Correlated Basis
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/618894/files/volkmann-et-al-2024-chemically-accurate-potential-curves-for-h2-molecules-using-explicitly-correlated-qubit-adapt%20%281%29.pdf
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/618894/files/volkmann-et-al-2024-chemically-accurate-potential-curves-for-h2-molecules-using-explicitly-correlated-qubit-adapt%20%281%29.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:618894
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1003636
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1086314
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2024
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2022
|d 2024-12-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2022
|d 2024-12-12
920 1 _ |0 I:(DE-H253)CQTA-20221102
|k CQTA
|l Centre f. Quantum Techno. a. Application
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CQTA-20221102
999 C 5 |a 10.1038/s42254-021-00348-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.22331/q-2018-08-06-79
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.abb9811
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.48550/arXiv.1411.4028
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rsta.2021.0062
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.106.114511
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/d1ra07451b
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.106.144426
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep03589
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms5213
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.8.031022
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41534-019-0187-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevResearch.4.033154
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.127.120502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.48550/ARXIV.2009.12472
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/qua.21198
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/2058-9565/aad3e4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01331938
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1006/aphy.2002.6254
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature23879
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/18/2/023023
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physrep.2022.08.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/qute.201900070
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-018-07090-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-021-21728-w
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s42484-023-00118-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-019-10988-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41534-023-00681-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PRXQuantum.2.020310
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s42979-022-01346-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.105.064317
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cr200204r
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D2CP00247G
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.22331/q-2023-06-12-1040
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0092-640X(70)80007-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00214-011-1079-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1697142
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.22331/q-2019-07-01-156
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D1CP02227J
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.106.032434
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jctc.8b01004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PRXQuantum.3.020351
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-4075/37/20/005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.11.1792
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1742457
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jctc.2c00709
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevResearch.1.013006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.167902
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Jones, E.; Travis, O.; Peterson, P. SciPy: Open Source Scientific Tools for Python, 2001. http://www.scipy.orgweb/ (accessed date 06/13/2023).
999 C 5 |a 10.1103/PhysRevA.64.052712
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3700/20/23/010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.71.2871
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.48550/arXiv.1811.04968
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/wcms.1340
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s42005-022-00982-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-2852(77)90050-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.48550/arXiv.1811.04968
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1666011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Grotendorst, J. Modern Methods and Algorithms of Quantum Chemistry; John von Neumann Institute for Computing: Jülich, 2000; Vol. 1, pp 153–201.


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21