000618894 001__ 618894
000618894 005__ 20250723173010.0
000618894 0247_ $$2doi$$a10.1021/acs.jctc.3c01281
000618894 0247_ $$2ISSN$$a1549-9618
000618894 0247_ $$2ISSN$$a1549-9626
000618894 0247_ $$2arXiv$$aarXiv:2308.07259
000618894 0247_ $$2pmid$$a38215397
000618894 0247_ $$2WOS$$aWOS:001162285900001
000618894 0247_ $$2openalex$$aopenalex:W4390821798
000618894 037__ $$aPUBDB-2024-07216
000618894 041__ $$aEnglish
000618894 082__ $$a610
000618894 088__ $$2arXiv$$aarXiv:2308.07259
000618894 1001_ $$0P:(DE-HGF)0$$aVolkmann, Hakon$$b0$$eCorresponding author
000618894 245__ $$aChemically Accurate Potential Curves for H$_ 2$ Molecules Using Explicitly Correlated Qubit-ADAPT
000618894 260__ $$aWashington, DC$$b[Verlag nicht ermittelbar]$$c2024
000618894 3367_ $$2DRIVER$$aarticle
000618894 3367_ $$2DataCite$$aOutput Types/Journal article
000618894 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734704113_2229497
000618894 3367_ $$2BibTeX$$aARTICLE
000618894 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000618894 3367_ $$00$$2EndNote$$aJournal Article
000618894 500__ $$aWaiting for fulltext
000618894 520__ $$aWith the recent advances in the development ofdevices capable of performing quantum computations, a growinginterest in finding near-term applications has emerged in manyareas of science. In the era of nonfault tolerant quantum devices,algorithms that only require comparably short circuits accom-panied by high repetition rates are considered to be a promisingapproach for assisting classical machines with finding a solution oncomputationally hard problems. The ADAPT approach previouslyintroduced in Nat. Commun. 10, 3007 (2019) extends the class ofvariational quantum eigensolver algorithms with dynamicallygrowing ansä tze in order to find approximations to the groundand excited state energies of molecules. In this work, the ADAPTalgorithm has been combined with a first-quantized formulation forthe hydrogen molecule in the Born−Oppenheimer approximation, employing the explicitly correlated basis functions introduced inJ. Chem. Phys. 43, 2429 (1965). By the virtue of their explicit electronic correlation properties, it is shown in classically performedsimulations that chemical accuracy (<1.6 mHa) can be reached for ground and excited state potential curves using reasonably shortcircuits.
000618894 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000618894 536__ $$0G:(EU-Grant)101087126$$aQUEST - QUantum computing for Excellence in Science and Technology (101087126)$$c101087126$$fHORIZON-WIDERA-2022-TALENTS-01$$x1
000618894 542__ $$2Crossref$$i2024-01-12$$uhttps://doi.org/10.15223/policy-029
000618894 542__ $$2Crossref$$i2024-01-12$$uhttps://doi.org/10.15223/policy-037
000618894 542__ $$2Crossref$$i2024-01-12$$uhttps://doi.org/10.15223/policy-045
000618894 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000618894 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000618894 7001_ $$0P:(DE-HGF)0$$aSathyanarayanan, Raamamurthy$$b1
000618894 7001_ $$00009-0002-8886-2336$$aSaenz, Alejandro$$b2
000618894 7001_ $$0P:(DE-H253)PIP1003636$$aJansen, Karl$$b3
000618894 7001_ $$0P:(DE-H253)PIP1086314$$aKuehn, Stefan$$b4$$eCorresponding author
000618894 77318 $$2Crossref$$3journal-article$$a10.1021/acs.jctc.3c01281$$bAmerican Chemical Society (ACS)$$d2024-01-12$$n3$$p1244-1251$$tJournal of Chemical Theory and Computation$$v20$$x1549-9618$$y2024
000618894 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.3c01281$$gVol. 20, no. 3, p. 1244 - 1251$$n3$$p1244-1251$$tJournal of chemical theory and computation$$v20$$x1549-9618$$y2024
000618894 7870_ $$0PUBDB-2023-05073$$aVolkmann, Hakon et.al.$$d2023$$iIsParent$$rarXiv:2308.07259$$tA qubit-ADAPT Implementation for H$_2$ Molecules using an Explicitly Correlated Basis
000618894 8564_ $$uhttps://bib-pubdb1.desy.de/record/618894/files/volkmann-et-al-2024-chemically-accurate-potential-curves-for-h2-molecules-using-explicitly-correlated-qubit-adapt%20%281%29.pdf$$yRestricted
000618894 8564_ $$uhttps://bib-pubdb1.desy.de/record/618894/files/volkmann-et-al-2024-chemically-accurate-potential-curves-for-h2-molecules-using-explicitly-correlated-qubit-adapt%20%281%29.pdf?subformat=pdfa$$xpdfa$$yRestricted
000618894 909CO $$ooai:bib-pubdb1.desy.de:618894$$pec_fundedresources$$pVDB$$popenaire
000618894 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003636$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000618894 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086314$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000618894 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000618894 9141_ $$y2024
000618894 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-20
000618894 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-20
000618894 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000618894 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000618894 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000618894 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12
000618894 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000618894 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2022$$d2024-12-12
000618894 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2022$$d2024-12-12
000618894 9201_ $$0I:(DE-H253)CQTA-20221102$$kCQTA$$lCentre f. Quantum Techno. a. Application$$x0
000618894 980__ $$ajournal
000618894 980__ $$aVDB
000618894 980__ $$aUNRESTRICTED
000618894 980__ $$aI:(DE-H253)CQTA-20221102
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s42254-021-00348-9
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22331/q-2018-08-06-79
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abb9811
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/arXiv.1411.4028
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rsta.2021.0062
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.114511
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/d1ra07451b
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.106.144426
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep03589
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms5213
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.8.031022
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41534-019-0187-2
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.4.033154
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.127.120502
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/ARXIV.2009.12472
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/qua.21198
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/2058-9565/aad3e4
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01331938
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/aphy.2002.6254
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature23879
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/18/2/023023
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2022.08.003
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/qute.201900070
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-07090-4
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-021-21728-w
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s42484-023-00118-z
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-019-10988-2
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41534-023-00681-0
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PRXQuantum.2.020310
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s42979-022-01346-z
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.105.064317
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cr200204r
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D2CP00247G
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22331/q-2023-06-12-1040
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0092-640X(70)80007-9
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00214-011-1079-5
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1697142
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22331/q-2019-07-01-156
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D1CP02227J
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.106.032434
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jctc.8b01004
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PRXQuantum.3.020351
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-4075/37/20/005
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.11.1792
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1742457
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jctc.2c00709
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.1.013006
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.167902
000618894 999C5 $$2Crossref$$uJones, E.; Travis, O.; Peterson, P. SciPy: Open Source Scientific Tools for Python, 2001. http://www.scipy.orgweb/ (accessed date 06/13/2023).
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.64.052712
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3700/20/23/010
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.71.2871
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/arXiv.1811.04968
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/wcms.1340
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s42005-022-00982-4
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-2852(77)90050-9
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.48550/arXiv.1811.04968
000618894 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1666011
000618894 999C5 $$2Crossref$$uGrotendorst, J. Modern Methods and Algorithms of Quantum Chemistry; John von Neumann Institute for Computing: Jülich, 2000; Vol. 1, pp 153–201.