001     618892
005     20250723173011.0
024 7 _ |a 10.1140/epjc/s10052-024-12601-3
|2 doi
024 7 _ |a 1434-6044
|2 ISSN
024 7 _ |a 1434-6052
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-07214
|2 datacite_doi
024 7 _ |a arXiv:2308.13231
|2 arXiv
024 7 _ |a WOS:001179101500001
|2 WOS
024 7 _ |a openalex:W4392629364
|2 openalex
037 _ _ |a PUBDB-2024-07214
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2308.13231
|2 arXiv
100 1 _ |a van Rijnbach, Milou
|0 0000-0003-3728-5102
|b 0
|e Corresponding author
245 _ _ |a Radiation hardness of MALTA2 monolithic CMOS imaging sensors on Czochralski substrates
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738246948_3825142
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a MALTA2 is the latest full-scale prototype of the MALTA family of Depleted Monolithic Active Pixel Sensors (DMAPS) produced in Tower Semiconductor 180 nm CMOS technology. In order to comply with the requirements of High Energy Physics (HEP) experiments, various process modifications and front-end changes have been implemented to achieve low power consumption, reduce Random Telegraph Signal (RTS) noise, and optimise the charge collection geometry. Compared to its predecessors, MALTA2 targets the use of a high-resistivity, thick Czochralski (Cz) substrates in order to demonstrate radiation hardness in terms of detection efficiency and timing resolution up to 3E$^{15}$ 1 MeV n$_{eq}$/cm$^2$ with backside metallisation to achieve good propagation of the bias voltage. This manuscript shows the results that were obtained with non-irradiated and irradiated MALTA2 samples on Cz substrates from the CERN SPS test beam campaign from 2021-2023 using the MALTA telescope.
536 _ _ |a 622 - Detector Technologies and Systems (POF4-622)
|0 G:(DE-HGF)POF4-622
|c POF4-622
|f POF IV
|x 0
542 _ _ |i 2024-03-10
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-03-10
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Berlea, Vlad Dumitru
|0 P:(DE-H253)PIP1095239
|b 1
700 1 _ |a Dao, Valerio
|b 2
700 1 _ |a Gaži, Martin
|b 3
700 1 _ |a Allport, Phil
|b 4
700 1 _ |a Tortajada, Ignacio Asensi
|b 5
700 1 _ |a Behera, Prafulla
|0 P:(DE-H253)PIP1082636
|b 6
700 1 _ |a Bortoletto, Daniela
|b 7
700 1 _ |a Buttar, Craig
|b 8
700 1 _ |a Dachs, Florian
|b 9
700 1 _ |a Dash, Ganapati
|b 10
700 1 _ |a Dobrijević, Dominik
|b 11
700 1 _ |a Fasselt, Lucian
|0 P:(DE-H253)PIP1104777
|b 12
|u desy
700 1 _ |a de Acedo, Leyre Flores Sanz
|b 13
700 1 _ |a Gabrielli, Andrea
|b 14
700 1 _ |a Gonella, Laura
|b 15
700 1 _ |a González, Vicente
|b 16
700 1 _ |a Gustavino, Giuliano
|b 17
700 1 _ |a Jana, Pranati
|b 18
700 1 _ |a Li, Long
|b 19
700 1 _ |a Pernegger, Heinz
|b 20
700 1 _ |a Piro, Francesco
|b 21
700 1 _ |a Riedler, Petra
|b 22
700 1 _ |a Sandaker, Heidi
|b 23
700 1 _ |a Sánchez, Carlos Solans
|b 24
700 1 _ |a Snoeys, Walter
|b 25
700 1 _ |a Suligoj, Tomislav
|b 26
700 1 _ |a Núñez, Marcos Vázquez
|b 27
700 1 _ |a Vijay, Anusree
|b 28
700 1 _ |a Weick, Julian
|b 29
700 1 _ |a Worm, Steven
|0 P:(DE-H253)PIP1089976
|b 30
|u desy
700 1 _ |a Zoubir, Abdelhak M.
|b 31
773 1 8 |a 10.1140/epjc/s10052-024-12601-3
|b Springer Science and Business Media LLC
|d 2024-03-10
|n 3
|p 251
|3 journal-article
|2 Crossref
|t The European Physical Journal C
|v 84
|y 2024
|x 1434-6052
773 _ _ |a 10.1140/epjc/s10052-024-12601-3
|g Vol. 84, no. 3, p. 251
|0 PERI:(DE-600)1459069-4
|n 3
|p 251
|t The European physical journal / C
|v 84
|y 2024
|x 1434-6052
787 0 _ |a van Rijnbach, Milou et.al.
|d 2023
|i IsParent
|0 PUBDB-2023-05460
|r arXiv:2308.13231
|t Radiation Hardness of MALTA2 Monolithic CMOS Sensors on Czochralski Substrates
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/618892/files/s10052-024-12601-3.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/618892/files/s10052-024-12601-3.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:618892
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1095239
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1082636
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1104777
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1104777
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 30
|6 P:(DE-H253)PIP1089976
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-622
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Detector Technologies and Systems
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:05:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:05:14Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2023-10-21
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:05:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J C : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
920 1 _ |0 I:(DE-H253)Z_DET-20201126
|k Z_DET
|l Z_DET
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)Z_DET-20201126
980 1 _ |a FullTexts
999 C 5 |2 Crossref
|u ECFA Detector R &D Roadmap Process Group, The 2021 ECFA Detector Research and Development Roadmap, CERN-ESU-017 (2021)
999 C 5 |a 10.1016/j.nima.2015.09.057
|9 -- missing cx lookup --
|1 M Mager
|p 434 -
|2 Crossref
|u M. Mager et al., ALPIDE, the monolithic active pixel sensor for the ALICE ITS upgrade. Nucl. Instrum. Methods Phys. Res. A 824, 434–438 (2016)
|t Nucl. Instrum. Methods Phys. Res. A
|v 824
|y 2016
999 C 5 |9 -- missing cx lookup --
|a 10.1109/NSSMIC.2018.8824349
|2 Crossref
|u I. Berdalovic et al., MALTA: a CMOS pixel sensor with asynchronous readout for the ATLAS High-Luminosity upgrade, in 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC) (2018)
999 C 5 |9 -- missing cx lookup --
|a 10.1088/1748-0221/18/09/P09018
|2 Crossref
|u H. Pernegger et al., MALTA-Cz: a radiation hard full-size monolithic CMOS sensor with small electrodes on high-resistivity Czochralski substrate (2023). arXiv:2301.03912
999 C 5 |9 -- missing cx lookup --
|a 10.1088/1748-0221/14/05/C05013
|2 Crossref
|u M. Munker et al., Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance. JINST 14, C05013 (2019). arXiv:1903.10190
999 C 5 |a 10.1088/1748-0221/15/02/P02005
|9 -- missing cx lookup --
|1 M Dyndal
|p P02005 -
|2 Crossref
|u M. Dyndal et al., Mini-MALTA: radiation hard pixel designs for small-electrode monolithic CMOS sensors for the high luminosity LHC. JINST 15, P02005 (2020)
|t JINST
|v 15
|y 2020
999 C 5 |a 10.1109/TNS.2022.3170729
|9 -- missing cx lookup --
|1 F Piro
|p 1299 -
|2 Crossref
|u F. Piro et al., A 1-$$\mu $$W radiation-hard front-end in a 0.18-$$\mu $$m CMOS process for the MALTA2 monolithic sensor. IEEE Trans. Nucl. Sci. 69, 1299–309 (2022)
|t IEEE Trans. Nucl. Sci.
|v 69
|y 2022
999 C 5 |9 -- missing cx lookup --
|a 10.1088/1742-6596/2374/1/012169
|2 Crossref
|u L. Flores Sanz de Acedo et al., Latest developments and characterisation results of DMAPS in TowerJazz 180nm for High Luminosity LHC. J. Phys. Conf. Ser. 2374, P012169 (2022)
999 C 5 |a 10.1016/j.nima.2022.167224
|9 -- missing cx lookup --
|1 I Caicedo
|p P167224 -
|2 Crossref
|u I. Caicedo et al., Development and testing of a radiation-hard large-electrode DMAPS design in a 150 nm CMOS process. Nucl. Instrum. Methods Phys. Res. A 1040, P167224 (2022)
|t Nucl. Instrum. Methods Phys. Res. A
|v 1040
|y 2022
999 C 5 |a 10.1088/1748-0221/17/04/C04034
|9 -- missing cx lookup --
|1 M van Rijnbach
|p C04034 -
|2 Crossref
|u M. van Rijnbach et al., Radiation hardness and timing performance in MALTA monolithic pixel sensors in Tower Jazz 180 nm. JINST 17, C04034 (2022)
|t JINST
|v 17
|y 2022
999 C 5 |9 -- missing cx lookup --
|a 10.1140/epjc/s10052-022-10548-x
|2 Crossref
|u K. Dort, Simulation Studies and Characterisation of Monolithic Silicon Pixel-Detector Prototypes for Future Collider Detectors & Unsupervised Anomaly Detection in Belle II Pixel-Detector Data (2022). https://cds.cern.ch/record/2813457
999 C 5 |2 Crossref
|u STAYSTIK Silver-filled Electrically Conductive Film, https://www.macdermidalpha.com/semiconductor-solutions/products/adhesives/staystik®-571
999 C 5 |2 Crossref
|u TAIKO Process Dicing and Polishing, https://www.dicing-grinding.com/services/dicing/
999 C 5 |a 10.1140/epjc/s10052-023-11760-z
|9 -- missing cx lookup --
|1 M van Rijnbach
|p P581 -
|2 Crossref
|u M. van Rijnbach et al., Performance of the MALTA telescope. Eur. Phys. J. C 83, P581 (2023)
|t Eur. Phys. J. C
|v 83
|y 2023
999 C 5 |9 -- missing cx lookup --
|a 10.5281/zenodo.2586736
|2 Crossref
|u M. Kiehn et al., Proteus beam telescope reconstruction (2019). https://doi.org/10.5281/zenodo.2586736
999 C 5 |a 10.1016/j.apradiso.2017.09.022
|9 -- missing cx lookup --
|1 K Ambrožič
|p 140 -
|2 Crossref
|u K. Ambrožič et al., Computational analysis of the dose rates at JSI TRIGA reactor irradiation facilities. Appl. Radiat. Isot. 130, 140–152 (2017)
|t Appl. Radiat. Isot.
|v 130
|y 2017
999 C 5 |a 10.1016/j.apradiso.2011.11.042
|9 -- missing cx lookup --
|1 L Snoj
|p 483 -
|2 Crossref
|u L. Snoj et al., Computational analysis of irradiation facilities at the JSI TRIGA reactor. Appl. Radiat. Isot. 70, 483–488 (2012)
|t Appl. Radiat. Isot.
|v 70
|y 2012
999 C 5 |a 10.1016/S0168-9002(01)01642-4
|9 -- missing cx lookup --
|1 V Eremin
|p 556 -
|2 Crossref
|u V. Eremin et al., The origin of double peak electric field distribution in heavily irradiated silicon detectors. NIM-A 476, 556–564 (2002)
|t NIM-A
|v 476
|y 2002
999 C 5 |2 Crossref
|u ATLAS Collaboration et al., Technical design report for the ATLAS inner tracker strip detector. ATL-TDR-025, (Section 15.1) (2017)
999 C 5 |a 10.1088/1748-0221/9/01/C01060
|9 -- missing cx lookup --
|1 L Perktold
|p C01060 -
|2 Crossref
|u L. Perktold et al., A multichannel time-to-digital converter ASIC with better than 3 ps RMS time resolution. JINST 9, C01060 (2014)
|t JINST
|v 9
|y 2014
999 C 5 |a 10.1088/1748-0221/18/03/C03011
|9 -- missing cx lookup --
|1 G Gustavino
|p C03011 -
|2 Crossref
|u G. Gustavino et al., A timing performance of radiation hard MALTA monolithic pixel sensors. JINST 18(03), C03011 (2022)
|t JINST
|v 18
|y 2022


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21