Home > Publications database > Radiation hardness of MALTA2 monolithic CMOS imaging sensors on Czochralski substrates > print |
001 | 618892 | ||
005 | 20250723173011.0 | ||
024 | 7 | _ | |a 10.1140/epjc/s10052-024-12601-3 |2 doi |
024 | 7 | _ | |a 1434-6044 |2 ISSN |
024 | 7 | _ | |a 1434-6052 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-07214 |2 datacite_doi |
024 | 7 | _ | |a arXiv:2308.13231 |2 arXiv |
024 | 7 | _ | |a WOS:001179101500001 |2 WOS |
024 | 7 | _ | |a openalex:W4392629364 |2 openalex |
037 | _ | _ | |a PUBDB-2024-07214 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a arXiv:2308.13231 |2 arXiv |
100 | 1 | _ | |a van Rijnbach, Milou |0 0000-0003-3728-5102 |b 0 |e Corresponding author |
245 | _ | _ | |a Radiation hardness of MALTA2 monolithic CMOS imaging sensors on Czochralski substrates |
260 | _ | _ | |a Heidelberg |c 2024 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738246948_3825142 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a MALTA2 is the latest full-scale prototype of the MALTA family of Depleted Monolithic Active Pixel Sensors (DMAPS) produced in Tower Semiconductor 180 nm CMOS technology. In order to comply with the requirements of High Energy Physics (HEP) experiments, various process modifications and front-end changes have been implemented to achieve low power consumption, reduce Random Telegraph Signal (RTS) noise, and optimise the charge collection geometry. Compared to its predecessors, MALTA2 targets the use of a high-resistivity, thick Czochralski (Cz) substrates in order to demonstrate radiation hardness in terms of detection efficiency and timing resolution up to 3E$^{15}$ 1 MeV n$_{eq}$/cm$^2$ with backside metallisation to achieve good propagation of the bias voltage. This manuscript shows the results that were obtained with non-irradiated and irradiated MALTA2 samples on Cz substrates from the CERN SPS test beam campaign from 2021-2023 using the MALTA telescope. |
536 | _ | _ | |a 622 - Detector Technologies and Systems (POF4-622) |0 G:(DE-HGF)POF4-622 |c POF4-622 |f POF IV |x 0 |
542 | _ | _ | |i 2024-03-10 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-03-10 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)External-20140101 |5 EXP:(DE-MLZ)External-20140101 |e Measurement at external facility |x 0 |
700 | 1 | _ | |a Berlea, Vlad Dumitru |0 P:(DE-H253)PIP1095239 |b 1 |
700 | 1 | _ | |a Dao, Valerio |b 2 |
700 | 1 | _ | |a Gaži, Martin |b 3 |
700 | 1 | _ | |a Allport, Phil |b 4 |
700 | 1 | _ | |a Tortajada, Ignacio Asensi |b 5 |
700 | 1 | _ | |a Behera, Prafulla |0 P:(DE-H253)PIP1082636 |b 6 |
700 | 1 | _ | |a Bortoletto, Daniela |b 7 |
700 | 1 | _ | |a Buttar, Craig |b 8 |
700 | 1 | _ | |a Dachs, Florian |b 9 |
700 | 1 | _ | |a Dash, Ganapati |b 10 |
700 | 1 | _ | |a Dobrijević, Dominik |b 11 |
700 | 1 | _ | |a Fasselt, Lucian |0 P:(DE-H253)PIP1104777 |b 12 |u desy |
700 | 1 | _ | |a de Acedo, Leyre Flores Sanz |b 13 |
700 | 1 | _ | |a Gabrielli, Andrea |b 14 |
700 | 1 | _ | |a Gonella, Laura |b 15 |
700 | 1 | _ | |a González, Vicente |b 16 |
700 | 1 | _ | |a Gustavino, Giuliano |b 17 |
700 | 1 | _ | |a Jana, Pranati |b 18 |
700 | 1 | _ | |a Li, Long |b 19 |
700 | 1 | _ | |a Pernegger, Heinz |b 20 |
700 | 1 | _ | |a Piro, Francesco |b 21 |
700 | 1 | _ | |a Riedler, Petra |b 22 |
700 | 1 | _ | |a Sandaker, Heidi |b 23 |
700 | 1 | _ | |a Sánchez, Carlos Solans |b 24 |
700 | 1 | _ | |a Snoeys, Walter |b 25 |
700 | 1 | _ | |a Suligoj, Tomislav |b 26 |
700 | 1 | _ | |a Núñez, Marcos Vázquez |b 27 |
700 | 1 | _ | |a Vijay, Anusree |b 28 |
700 | 1 | _ | |a Weick, Julian |b 29 |
700 | 1 | _ | |a Worm, Steven |0 P:(DE-H253)PIP1089976 |b 30 |u desy |
700 | 1 | _ | |a Zoubir, Abdelhak M. |b 31 |
773 | 1 | 8 | |a 10.1140/epjc/s10052-024-12601-3 |b Springer Science and Business Media LLC |d 2024-03-10 |n 3 |p 251 |3 journal-article |2 Crossref |t The European Physical Journal C |v 84 |y 2024 |x 1434-6052 |
773 | _ | _ | |a 10.1140/epjc/s10052-024-12601-3 |g Vol. 84, no. 3, p. 251 |0 PERI:(DE-600)1459069-4 |n 3 |p 251 |t The European physical journal / C |v 84 |y 2024 |x 1434-6052 |
787 | 0 | _ | |a van Rijnbach, Milou et.al. |d 2023 |i IsParent |0 PUBDB-2023-05460 |r arXiv:2308.13231 |t Radiation Hardness of MALTA2 Monolithic CMOS Sensors on Czochralski Substrates |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/618892/files/s10052-024-12601-3.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/618892/files/s10052-024-12601-3.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:618892 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1095239 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1082636 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 12 |6 P:(DE-H253)PIP1104777 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-H253)PIP1104777 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 30 |6 P:(DE-H253)PIP1089976 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-622 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Detector Technologies and Systems |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2023-10-21 |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR PHYS J C : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-27 |
920 | 1 | _ | |0 I:(DE-H253)Z_DET-20201126 |k Z_DET |l Z_DET |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)Z_DET-20201126 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |2 Crossref |u ECFA Detector R &D Roadmap Process Group, The 2021 ECFA Detector Research and Development Roadmap, CERN-ESU-017 (2021) |
999 | C | 5 | |a 10.1016/j.nima.2015.09.057 |9 -- missing cx lookup -- |1 M Mager |p 434 - |2 Crossref |u M. Mager et al., ALPIDE, the monolithic active pixel sensor for the ALICE ITS upgrade. Nucl. Instrum. Methods Phys. Res. A 824, 434–438 (2016) |t Nucl. Instrum. Methods Phys. Res. A |v 824 |y 2016 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1109/NSSMIC.2018.8824349 |2 Crossref |u I. Berdalovic et al., MALTA: a CMOS pixel sensor with asynchronous readout for the ATLAS High-Luminosity upgrade, in 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC) (2018) |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1088/1748-0221/18/09/P09018 |2 Crossref |u H. Pernegger et al., MALTA-Cz: a radiation hard full-size monolithic CMOS sensor with small electrodes on high-resistivity Czochralski substrate (2023). arXiv:2301.03912 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1088/1748-0221/14/05/C05013 |2 Crossref |u M. Munker et al., Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance. JINST 14, C05013 (2019). arXiv:1903.10190 |
999 | C | 5 | |a 10.1088/1748-0221/15/02/P02005 |9 -- missing cx lookup -- |1 M Dyndal |p P02005 - |2 Crossref |u M. Dyndal et al., Mini-MALTA: radiation hard pixel designs for small-electrode monolithic CMOS sensors for the high luminosity LHC. JINST 15, P02005 (2020) |t JINST |v 15 |y 2020 |
999 | C | 5 | |a 10.1109/TNS.2022.3170729 |9 -- missing cx lookup -- |1 F Piro |p 1299 - |2 Crossref |u F. Piro et al., A 1-$$\mu $$W radiation-hard front-end in a 0.18-$$\mu $$m CMOS process for the MALTA2 monolithic sensor. IEEE Trans. Nucl. Sci. 69, 1299–309 (2022) |t IEEE Trans. Nucl. Sci. |v 69 |y 2022 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1088/1742-6596/2374/1/012169 |2 Crossref |u L. Flores Sanz de Acedo et al., Latest developments and characterisation results of DMAPS in TowerJazz 180nm for High Luminosity LHC. J. Phys. Conf. Ser. 2374, P012169 (2022) |
999 | C | 5 | |a 10.1016/j.nima.2022.167224 |9 -- missing cx lookup -- |1 I Caicedo |p P167224 - |2 Crossref |u I. Caicedo et al., Development and testing of a radiation-hard large-electrode DMAPS design in a 150 nm CMOS process. Nucl. Instrum. Methods Phys. Res. A 1040, P167224 (2022) |t Nucl. Instrum. Methods Phys. Res. A |v 1040 |y 2022 |
999 | C | 5 | |a 10.1088/1748-0221/17/04/C04034 |9 -- missing cx lookup -- |1 M van Rijnbach |p C04034 - |2 Crossref |u M. van Rijnbach et al., Radiation hardness and timing performance in MALTA monolithic pixel sensors in Tower Jazz 180 nm. JINST 17, C04034 (2022) |t JINST |v 17 |y 2022 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1140/epjc/s10052-022-10548-x |2 Crossref |u K. Dort, Simulation Studies and Characterisation of Monolithic Silicon Pixel-Detector Prototypes for Future Collider Detectors & Unsupervised Anomaly Detection in Belle II Pixel-Detector Data (2022). https://cds.cern.ch/record/2813457 |
999 | C | 5 | |2 Crossref |u STAYSTIK Silver-filled Electrically Conductive Film, https://www.macdermidalpha.com/semiconductor-solutions/products/adhesives/staystik®-571 |
999 | C | 5 | |2 Crossref |u TAIKO Process Dicing and Polishing, https://www.dicing-grinding.com/services/dicing/ |
999 | C | 5 | |a 10.1140/epjc/s10052-023-11760-z |9 -- missing cx lookup -- |1 M van Rijnbach |p P581 - |2 Crossref |u M. van Rijnbach et al., Performance of the MALTA telescope. Eur. Phys. J. C 83, P581 (2023) |t Eur. Phys. J. C |v 83 |y 2023 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.5281/zenodo.2586736 |2 Crossref |u M. Kiehn et al., Proteus beam telescope reconstruction (2019). https://doi.org/10.5281/zenodo.2586736 |
999 | C | 5 | |a 10.1016/j.apradiso.2017.09.022 |9 -- missing cx lookup -- |1 K Ambrožič |p 140 - |2 Crossref |u K. Ambrožič et al., Computational analysis of the dose rates at JSI TRIGA reactor irradiation facilities. Appl. Radiat. Isot. 130, 140–152 (2017) |t Appl. Radiat. Isot. |v 130 |y 2017 |
999 | C | 5 | |a 10.1016/j.apradiso.2011.11.042 |9 -- missing cx lookup -- |1 L Snoj |p 483 - |2 Crossref |u L. Snoj et al., Computational analysis of irradiation facilities at the JSI TRIGA reactor. Appl. Radiat. Isot. 70, 483–488 (2012) |t Appl. Radiat. Isot. |v 70 |y 2012 |
999 | C | 5 | |a 10.1016/S0168-9002(01)01642-4 |9 -- missing cx lookup -- |1 V Eremin |p 556 - |2 Crossref |u V. Eremin et al., The origin of double peak electric field distribution in heavily irradiated silicon detectors. NIM-A 476, 556–564 (2002) |t NIM-A |v 476 |y 2002 |
999 | C | 5 | |2 Crossref |u ATLAS Collaboration et al., Technical design report for the ATLAS inner tracker strip detector. ATL-TDR-025, (Section 15.1) (2017) |
999 | C | 5 | |a 10.1088/1748-0221/9/01/C01060 |9 -- missing cx lookup -- |1 L Perktold |p C01060 - |2 Crossref |u L. Perktold et al., A multichannel time-to-digital converter ASIC with better than 3 ps RMS time resolution. JINST 9, C01060 (2014) |t JINST |v 9 |y 2014 |
999 | C | 5 | |a 10.1088/1748-0221/18/03/C03011 |9 -- missing cx lookup -- |1 G Gustavino |p C03011 - |2 Crossref |u G. Gustavino et al., A timing performance of radiation hard MALTA monolithic pixel sensors. JINST 18(03), C03011 (2022) |t JINST |v 18 |y 2022 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|