001     618856
005     20250723172953.0
024 7 _ |a 10.1038/s41563-024-01911-2
|2 doi
024 7 _ |a 1476-1122
|2 ISSN
024 7 _ |a 1476-4660
|2 ISSN
024 7 _ |a altmetric:164299580
|2 altmetric
024 7 _ |a pmid:38849556
|2 pmid
024 7 _ |a WOS:001242165900001
|2 WOS
024 7 _ |a openalex:W4399437404
|2 openalex
037 _ _ |a PUBDB-2024-07194
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Li, Dongqi
|b 0
245 _ _ |a MXenes with ordered triatomic-layer borate polyanion terminations
260 _ _ |a Basingstoke
|c 2024
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736350232_3452350
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Surface terminations profoundly influence the intrinsic properties of MXenes, but existing terminations are limited to monoatomic layers or simple groups, showing disordered arrangements and inferior stability. Here we present the synthesis of MXenes with triatomic-layer borate polyanion terminations (OBO terminations) through a flux-assisted eutectic molten etching approach. During the synthesis, Lewis acidic salts act as the etching agent to obtain the MXene backbone, while borax generates BO2− species, which cap the MXene surface with an O–B–O configuration. In contrast to conventional chlorine/oxygen-terminated Nb2C with localized charge transport, OBO-terminated Nb2C features band transport described by the Drude model, exhibiting a 15-fold increase in electrical conductivity and a 10-fold improvement in charge mobility at the d.c. limit. This transition is attributed to surface ordering that effectively mitigates charge carrier backscattering and trapping. Additionally, OBO terminations provide Ti3C2 MXene with substantially enriched Li+-hosting sites and thereby a large charge-storage capacity of 420 mAh g−1. Our findings illustrate the potential of intricate termination configurations in MXenes and their applications for (opto)electronics and energy storage.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a GrapheneCore3 - Graphene Flagship Core Project 3 (881603)
|0 G:(EU-Grant)881603
|c 881603
|f H2020-SGA-FET-GRAPHENE-2019
|x 1
536 _ _ |a LIGHT-CAP - MULTI-ELECTRON PROCESSES FOR LIGHT DRIVEN ELECTRODES AND ELECTROLYTES IN CONVERSION AND STORAGE OF SOLAR ENERGY (101017821)
|0 G:(EU-Grant)101017821
|c 101017821
|f H2020-FETPROACT-2020-2
|x 2
536 _ _ |a GREENCAP - Graphene, MXene and ionic liquid-based sustainable supercapacitor (101091572)
|0 G:(EU-Grant)101091572
|c 101091572
|f HORIZON-CL4-2022-RESILIENCE-01
|x 3
536 _ _ |a SFB 1415 A10 - Synthese von Definierten, Chiralen 2D Kovalenten Organischen 2D Gerüstverbindungen (A10*) (544187141)
|0 G:(GEPRIS)544187141
|c 544187141
|x 4
542 _ _ |i 2024-06-07
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
542 _ _ |i 2024-06-07
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P65
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P65-20150101
|6 EXP:(DE-H253)P-P65-20150101
|x 0
700 1 _ |a Zheng, Wenhao
|0 0000-0002-0090-614X
|b 1
700 1 _ |a Gali, Sai Manoj
|0 0000-0002-0388-7888
|b 2
700 1 _ |a Sobczak, Kamil
|0 0000-0002-9747-8144
|b 3
700 1 _ |a Horák, Michal
|0 0000-0001-6503-8294
|b 4
700 1 _ |a Polčák, Josef
|b 5
700 1 _ |a Lopatik, Nikolaj
|b 6
700 1 _ |a Li, Zichao
|b 7
700 1 _ |a Zhang, Jiaxu
|0 P:(DE-H253)PIP1100471
|b 8
700 1 _ |a Sabaghi, Davood
|b 9
700 1 _ |a Zhou, Shengqiang
|0 P:(DE-H253)PIP1015410
|b 10
700 1 _ |a Michałowski, Paweł P.
|0 0000-0002-3299-4092
|b 11
700 1 _ |a Zschech, Ehrenfried
|0 0000-0002-5220-3083
|b 12
700 1 _ |a Brunner, Eike
|b 13
700 1 _ |a Donten, Mikołaj
|b 14
700 1 _ |a Šikola, Tomáš
|b 15
700 1 _ |a Bonn, Mischa
|0 0000-0001-6851-8453
|b 16
700 1 _ |a Wang, Hai I.
|0 P:(DE-H253)PIP1012524
|b 17
|e Corresponding author
700 1 _ |a Beljonne, David
|0 0000-0001-5082-9990
|b 18
|e Corresponding author
700 1 _ |a Yu, Minghao
|0 P:(DE-H253)PIP1083931
|b 19
|e Corresponding author
700 1 _ |a Feng, Xinliang
|0 P:(DE-H253)PIP1081776
|b 20
|e Corresponding author
773 1 8 |a 10.1038/s41563-024-01911-2
|b Springer Science and Business Media LLC
|d 2024-06-07
|n 8
|p 1085-1092
|3 journal-article
|2 Crossref
|t Nature Materials
|v 23
|y 2024
|x 1476-1122
773 _ _ |a 10.1038/s41563-024-01911-2
|g Vol. 23, no. 8, p. 1085 - 1092
|0 PERI:(DE-600)2088679-2
|n 8
|p 1085-1092
|t Nature materials
|v 23
|y 2024
|x 1476-1122
856 4 _ |u https://bib-pubdb1.desy.de/record/618856/files/s41563-024-01911-2.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/618856/files/s41563-024-01911-2.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:618856
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1100471
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1015410
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-H253)PIP1012524
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1083931
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 20
|6 P:(DE-H253)PIP1081776
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MATER : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NAT MATER : 2022
|d 2025-01-06
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1038/natrevmats.2016.98
|9 -- missing cx lookup --
|1 B Anasori
|p 16098 -
|2 Crossref
|u Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).
|t Nat. Rev. Mater.
|v 2
|y 2017
999 C 5 |a 10.1038/s41566-023-01197-x
|9 -- missing cx lookup --
|1 T Zhao
|p 622 -
|2 Crossref
|u Zhao, T. et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17, 622–628 (2023).
|t Nat. Photonics
|v 17
|y 2023
999 C 5 |a 10.1038/s41567-022-01541-y
|9 -- missing cx lookup --
|1 W Zheng
|p 544 -
|2 Crossref
|u Zheng, W. et al. Band transport by large Fröhlich polarons in MXenes. Nat. Phys. 18, 544–550 (2022).
|t Nat. Phys.
|v 18
|y 2022
999 C 5 |a 10.1038/s41565-020-00818-8
|9 -- missing cx lookup --
|1 S Liu
|p 331 -
|2 Crossref
|u Liu, S. et al. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331–336 (2021).
|t Nat. Nanotechnol.
|v 16
|y 2021
999 C 5 |a 10.1038/s41893-019-0373-4
|9 -- missing cx lookup --
|1 X Xie
|p 856 -
|2 Crossref
|u Xie, X. et al. Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2, 856–862 (2019).
|t Nat. Sustain.
|v 2
|y 2019
999 C 5 |a 10.1126/science.abf1581
|9 -- missing cx lookup --
|1 AV Mohammadi
|p eabf1581 -
|2 Crossref
|u Mohammadi, A. V., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).
|t Science
|v 372
|y 2021
999 C 5 |a 10.1039/D1CP01788H
|9 -- missing cx lookup --
|1 M Faraji
|p 15319 -
|2 Crossref
|u Faraji, M. et al. Surface modification of titanium carbide MXene monolayers (Ti2C and Ti3C2) via chalcogenide and halogenide atoms. Phys. Chem. Chem. Phys. 23, 15319–15328 (2021).
|t Phys. Chem. Chem. Phys.
|v 23
|y 2021
999 C 5 |a 10.1038/s41467-018-08169-8
|1 JL Hart
|9 -- missing cx lookup --
|2 Crossref
|u Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).
|t Nat. Commun.
|v 10
|y 2019
999 C 5 |a 10.1126/science.aba8311
|9 -- missing cx lookup --
|1 V Kamysbayev
|p 979 -
|2 Crossref
|u Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).
|t Science
|v 369
|y 2020
999 C 5 |a 10.1038/s41563-020-0657-0
|9 -- missing cx lookup --
|1 Y Li
|p 894 -
|2 Crossref
|u Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).
|t Nat. Mater.
|v 19
|y 2020
999 C 5 |a 10.1021/acsnano.0c07972
|9 -- missing cx lookup --
|1 M Li
|p 1077 -
|2 Crossref
|u Li, M. et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15, 1077–1085 (2021).
|t ACS Nano
|v 15
|y 2021
999 C 5 |a 10.1021/jacs.9b00574
|9 -- missing cx lookup --
|1 M Li
|p 4730 -
|2 Crossref
|u Li, M. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019).
|t J. Am. Chem. Soc.
|v 141
|y 2019
999 C 5 |a 10.1126/science.add5901
|9 -- missing cx lookup --
|1 H Ding
|p 1130 -
|2 Crossref
|u Ding, H. et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379, 1130–1135 (2023).
|t Science
|v 379
|y 2023
999 C 5 |a 10.1002/adma.202101015
|9 -- missing cx lookup --
|1 C Wang
|p 2101015 -
|2 Crossref
|u Wang, C. et al. HCl-based hydrothermal etching strategy toward fluoride-free MXenes. Adv. Mater. 33, 2101015 (2021).
|t Adv. Mater.
|v 33
|y 2021
999 C 5 |a 10.1002/anie.201800887
|9 -- missing cx lookup --
|1 T Li
|p 6115 -
|2 Crossref
|u Li, T. et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chemie Int. Ed. 57, 6115–6119 (2018).
|t Angew. Chemie Int. Ed.
|v 57
|y 2018
999 C 5 |a 10.1002/anie.201809662
|9 -- missing cx lookup --
|1 S Yang
|p 15491 -
|2 Crossref
|u Yang, S. et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018).
|t Angew. Chem. Int. Ed.
|v 57
|y 2018
999 C 5 |a 10.1002/anie.202015627
|9 -- missing cx lookup --
|1 H Shi
|p 8689 -
|2 Crossref
|u Shi, H. et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60, 8689–8693 (2021).
|t Angew. Chem. Int. Ed.
|v 60
|y 2021
999 C 5 |a 10.1039/C5NR06513E
|9 -- missing cx lookup --
|1 S Lai
|p 19390 -
|2 Crossref
|u Lai, S. et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale 7, 19390–19396 (2015).
|t Nanoscale
|v 7
|y 2015
999 C 5 |a 10.1002/adfm.202106294
|9 -- missing cx lookup --
|1 A Saha
|p 2106294 -
|2 Crossref
|u Saha, A. et al. Enhancing the energy storage capabilities of Ti3C2Tx MXene electrodes by atomic surface reduction. Adv. Funct. Mater. 31, 2106294 (2021).
|t Adv. Funct. Mater.
|v 31
|y 2021
999 C 5 |a 10.1007/s00269-012-0482-3
|9 -- missing cx lookup --
|1 B Zhou
|p 363 -
|2 Crossref
|u Zhou, B., Sun, Z., Yao, Y. & Pan, Y. Correlations between 11B NMR parameters and structural characters in borate and borosilicate minerals investigated by high-resolution MAS NMR and ab initio calculations. Phys. Chem. Miner. 39, 363–372 (2012).
|t Phys. Chem. Miner.
|v 39
|y 2012
999 C 5 |a 10.1107/S0909049505012719
|9 -- missing cx lookup --
|1 B Ravel
|p 537 -
|2 Crossref
|u Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
|t J. Synchrotron Radiat.
|v 12
|y 2005
999 C 5 |a 10.1038/s41565-022-01214-0
|9 -- missing cx lookup --
|1 PP Michałowski
|p 1192 -
|2 Crossref
|u Michałowski, P. P. et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat. Nanotechnol. 17, 1192–1197 (2022).
|t Nat. Nanotechnol.
|v 17
|y 2022
999 C 5 |a 10.1107/S0021889813003531
|9 -- missing cx lookup --
|1 BH Toby
|p 544 -
|2 Crossref
|u Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).
|t J. Appl. Crystallogr.
|v 46
|y 2013
999 C 5 |a 10.1103/PhysRevB.98.104202
|1 J Halim
|9 -- missing cx lookup --
|2 Crossref
|u Halim, J. et al. Variable range hopping and thermally activated transport in molybdenum-based MXenes. Phys. Rev. B 98, 104202 (2018).
|t Phys. Rev. B
|v 98
|y 2018
999 C 5 |a 10.1016/j.jphotochem.2010.08.006
|9 -- missing cx lookup --
|1 H Němec
|p 123 -
|2 Crossref
|u Němec, H., Ǩuel, P. & Sundström, V. Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy. J. Photochem. Photobiol. A 215, 123–139 (2010).
|t J. Photochem. Photobiol. A
|v 215
|y 2010
999 C 5 |a 10.1103/RevModPhys.83.543
|9 -- missing cx lookup --
|1 R Ulbricht
|p 543 -
|2 Crossref
|u Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).
|t Rev. Mod. Phys.
|v 83
|y 2011
999 C 5 |a 10.1038/s41563-018-0189-z
|9 -- missing cx lookup --
|1 R Dong
|p 1027 -
|2 Crossref
|u Dong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nat. Mater. 17, 1027–1032 (2018).
|t Nat. Mater.
|v 17
|y 2018
999 C 5 |a 10.1103/PhysRevB.96.205439
|1 TL Cocker
|9 -- missing cx lookup --
|2 Crossref
|u Cocker, T. L. et al. Microscopic origin of the Drude–Smith model. Phys. Rev. B 96, 205439 (2017).
|t Phys. Rev. B
|v 96
|y 2017
999 C 5 |a 10.1021/acs.nanolett.0c01693
|9 -- missing cx lookup --
|1 W Zheng
|p 5807 -
|2 Crossref
|u Zheng, W., Bonn, M. & Wang, H. I. Photoconductivity multiplication in semiconducting few-layer MoTe2. Nano Lett. 20, 5807–5813 (2020).
|t Nano Lett.
|v 20
|y 2020
999 C 5 |a 10.1038/s41560-019-0339-9
|9 -- missing cx lookup --
|1 X Wang
|p 241 -
|2 Crossref
|u Wang, X. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019).
|t Nat. Energy
|v 4
|y 2019
999 C 5 |a 10.1126/science.add9204
|9 -- missing cx lookup --
|1 D Wang
|p 1242 -
|2 Crossref
|u Wang, D. et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 379, 1242–1247 (2023).
|t Science
|v 379
|y 2023
999 C 5 |a 10.1038/s41557-023-01288-w
|9 -- missing cx lookup --
|1 C Zhou
|p 1722 -
|2 Crossref
|u Zhou, C. et al. Hybrid organic–inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces. Nat. Chem. 15, 1722–1729 (2023).
|t Nat. Chem.
|v 15
|y 2023
999 C 5 |a 10.1103/PhysRevB.54.11169
|9 -- missing cx lookup --
|1 G Kresse
|p 11169 -
|2 Crossref
|u Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
|t Phys. Rev. B
|v 54
|y 1996
999 C 5 |a 10.1103/PhysRevB.59.1758
|9 -- missing cx lookup --
|1 G Kresse
|p 1758 -
|2 Crossref
|u Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
|t Phys. Rev. B
|v 59
|y 1999
999 C 5 |a 10.1103/PhysRevLett.77.3865
|9 -- missing cx lookup --
|1 JP Perdew
|p 3865 -
|2 Crossref
|u Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
|t Phys. Rev. Lett.
|v 77
|y 1996
999 C 5 |a 10.1002/jcc.20495
|9 -- missing cx lookup --
|1 S Grimme
|p 1787 -
|2 Crossref
|u Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
|t J. Comput. Chem.
|v 27
|y 2006
999 C 5 |a 10.1039/C7RA11829E
|9 -- missing cx lookup --
|1 NG Limas
|p 2678 -
|2 Crossref
|u Limas, N. G. & Manz, T. A. Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and more. RSC Adv. 8, 2678–2707 (2018).
|t RSC Adv.
|v 8
|y 2018
999 C 5 |a 10.1063/1.1323224
|9 -- missing cx lookup --
|1 G Henkelman
|p 9978 -
|2 Crossref
|u Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).
|t J. Chem. Phys.
|v 113
|y 2000
999 C 5 |a 10.1063/1.1329672
|9 -- missing cx lookup --
|1 G Henkelman
|p 9901 -
|2 Crossref
|u Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
|t J. Chem. Phys.
|v 113
|y 2000


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21