000618856 001__ 618856
000618856 005__ 20250723172953.0
000618856 0247_ $$2doi$$a10.1038/s41563-024-01911-2
000618856 0247_ $$2ISSN$$a1476-1122
000618856 0247_ $$2ISSN$$a1476-4660
000618856 0247_ $$2altmetric$$aaltmetric:164299580
000618856 0247_ $$2pmid$$apmid:38849556
000618856 0247_ $$2WOS$$aWOS:001242165900001
000618856 0247_ $$2openalex$$aopenalex:W4399437404
000618856 037__ $$aPUBDB-2024-07194
000618856 041__ $$aEnglish
000618856 082__ $$a610
000618856 1001_ $$aLi, Dongqi$$b0
000618856 245__ $$aMXenes with ordered triatomic-layer borate polyanion terminations
000618856 260__ $$aBasingstoke$$bNature Publishing Group$$c2024
000618856 3367_ $$2DRIVER$$aarticle
000618856 3367_ $$2DataCite$$aOutput Types/Journal article
000618856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736350232_3452350
000618856 3367_ $$2BibTeX$$aARTICLE
000618856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000618856 3367_ $$00$$2EndNote$$aJournal Article
000618856 500__ $$aWaiting for fulltext 
000618856 520__ $$aSurface terminations profoundly influence the intrinsic properties of MXenes, but existing terminations are limited to monoatomic layers or simple groups, showing disordered arrangements and inferior stability. Here we present the synthesis of MXenes with triatomic-layer borate polyanion terminations (OBO terminations) through a flux-assisted eutectic molten etching approach. During the synthesis, Lewis acidic salts act as the etching agent to obtain the MXene backbone, while borax generates BO2− species, which cap the MXene surface with an O–B–O configuration. In contrast to conventional chlorine/oxygen-terminated Nb2C with localized charge transport, OBO-terminated Nb2C features band transport described by the Drude model, exhibiting a 15-fold increase in electrical conductivity and a 10-fold improvement in charge mobility at the d.c. limit. This transition is attributed to surface ordering that effectively mitigates charge carrier backscattering and trapping. Additionally, OBO terminations provide Ti3C2 MXene with substantially enriched Li+-hosting sites and thereby a large charge-storage capacity of 420 mAh g−1. Our findings illustrate the potential of intricate termination configurations in MXenes and their applications for (opto)electronics and energy storage.
000618856 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000618856 536__ $$0G:(EU-Grant)881603$$aGrapheneCore3 - Graphene Flagship Core Project 3 (881603)$$c881603$$fH2020-SGA-FET-GRAPHENE-2019$$x1
000618856 536__ $$0G:(EU-Grant)101017821$$aLIGHT-CAP - MULTI-ELECTRON PROCESSES FOR LIGHT DRIVEN ELECTRODES AND ELECTROLYTES IN CONVERSION AND STORAGE OF SOLAR ENERGY (101017821)$$c101017821$$fH2020-FETPROACT-2020-2$$x2
000618856 536__ $$0G:(EU-Grant)101091572$$aGREENCAP - Graphene, MXene and ionic liquid-based sustainable supercapacitor (101091572)$$c101091572$$fHORIZON-CL4-2022-RESILIENCE-01$$x3
000618856 536__ $$0G:(GEPRIS)544187141$$aSFB 1415 A10 - Synthese von Definierten, Chiralen 2D Kovalenten Organischen 2D Gerüstverbindungen (A10*) (544187141)$$c544187141$$x4
000618856 542__ $$2Crossref$$i2024-06-07$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining
000618856 542__ $$2Crossref$$i2024-06-07$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining
000618856 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000618856 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000618856 7001_ $$00000-0002-0090-614X$$aZheng, Wenhao$$b1
000618856 7001_ $$00000-0002-0388-7888$$aGali, Sai Manoj$$b2
000618856 7001_ $$00000-0002-9747-8144$$aSobczak, Kamil$$b3
000618856 7001_ $$00000-0001-6503-8294$$aHorák, Michal$$b4
000618856 7001_ $$aPolčák, Josef$$b5
000618856 7001_ $$aLopatik, Nikolaj$$b6
000618856 7001_ $$aLi, Zichao$$b7
000618856 7001_ $$0P:(DE-H253)PIP1100471$$aZhang, Jiaxu$$b8
000618856 7001_ $$aSabaghi, Davood$$b9
000618856 7001_ $$0P:(DE-H253)PIP1015410$$aZhou, Shengqiang$$b10
000618856 7001_ $$00000-0002-3299-4092$$aMichałowski, Paweł P.$$b11
000618856 7001_ $$00000-0002-5220-3083$$aZschech, Ehrenfried$$b12
000618856 7001_ $$aBrunner, Eike$$b13
000618856 7001_ $$aDonten, Mikołaj$$b14
000618856 7001_ $$aŠikola, Tomáš$$b15
000618856 7001_ $$00000-0001-6851-8453$$aBonn, Mischa$$b16
000618856 7001_ $$0P:(DE-H253)PIP1012524$$aWang, Hai I.$$b17$$eCorresponding author
000618856 7001_ $$00000-0001-5082-9990$$aBeljonne, David$$b18$$eCorresponding author
000618856 7001_ $$0P:(DE-H253)PIP1083931$$aYu, Minghao$$b19$$eCorresponding author
000618856 7001_ $$0P:(DE-H253)PIP1081776$$aFeng, Xinliang$$b20$$eCorresponding author
000618856 77318 $$2Crossref$$3journal-article$$a10.1038/s41563-024-01911-2$$bSpringer Science and Business Media LLC$$d2024-06-07$$n8$$p1085-1092$$tNature Materials$$v23$$x1476-1122$$y2024
000618856 773__ $$0PERI:(DE-600)2088679-2$$a10.1038/s41563-024-01911-2$$gVol. 23, no. 8, p. 1085 - 1092$$n8$$p1085-1092$$tNature materials$$v23$$x1476-1122$$y2024
000618856 8564_ $$uhttps://bib-pubdb1.desy.de/record/618856/files/s41563-024-01911-2.pdf$$yRestricted
000618856 8564_ $$uhttps://bib-pubdb1.desy.de/record/618856/files/s41563-024-01911-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000618856 909CO $$ooai:bib-pubdb1.desy.de:618856$$pec_fundedresources$$pVDB$$popenaire
000618856 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100471$$aExternal Institute$$b8$$kExtern
000618856 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015410$$aExternal Institute$$b10$$kExtern
000618856 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012524$$aExternal Institute$$b17$$kExtern
000618856 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083931$$aExternal Institute$$b19$$kExtern
000618856 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081776$$aExternal Institute$$b20$$kExtern
000618856 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000618856 9141_ $$y2024
000618856 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-24$$wger
000618856 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000618856 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24
000618856 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000618856 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-06$$wger
000618856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000618856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000618856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000618856 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-06
000618856 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-06
000618856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000618856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MATER : 2022$$d2025-01-06
000618856 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
000618856 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
000618856 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNAT MATER : 2022$$d2025-01-06
000618856 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000618856 980__ $$ajournal
000618856 980__ $$aVDB
000618856 980__ $$aI:(DE-H253)HAS-User-20120731
000618856 980__ $$aUNRESTRICTED
000618856 999C5 $$1B Anasori$$2Crossref$$9-- missing cx lookup --$$a10.1038/natrevmats.2016.98$$p16098 -$$tNat. Rev. Mater.$$uAnasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).$$v2$$y2017
000618856 999C5 $$1T Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-023-01197-x$$p622 -$$tNat. Photonics$$uZhao, T. et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17, 622–628 (2023).$$v17$$y2023
000618856 999C5 $$1W Zheng$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-022-01541-y$$p544 -$$tNat. Phys.$$uZheng, W. et al. Band transport by large Fröhlich polarons in MXenes. Nat. Phys. 18, 544–550 (2022).$$v18$$y2022
000618856 999C5 $$1S Liu$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41565-020-00818-8$$p331 -$$tNat. Nanotechnol.$$uLiu, S. et al. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331–336 (2021).$$v16$$y2021
000618856 999C5 $$1X Xie$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41893-019-0373-4$$p856 -$$tNat. Sustain.$$uXie, X. et al. Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2, 856–862 (2019).$$v2$$y2019
000618856 999C5 $$1AV Mohammadi$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abf1581$$peabf1581 -$$tScience$$uMohammadi, A. V., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).$$v372$$y2021
000618856 999C5 $$1M Faraji$$2Crossref$$9-- missing cx lookup --$$a10.1039/D1CP01788H$$p15319 -$$tPhys. Chem. Chem. Phys.$$uFaraji, M. et al. Surface modification of titanium carbide MXene monolayers (Ti2C and Ti3C2) via chalcogenide and halogenide atoms. Phys. Chem. Chem. Phys. 23, 15319–15328 (2021).$$v23$$y2021
000618856 999C5 $$1JL Hart$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-08169-8$$tNat. Commun.$$uHart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).$$v10$$y2019
000618856 999C5 $$1V Kamysbayev$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aba8311$$p979 -$$tScience$$uKamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).$$v369$$y2020
000618856 999C5 $$1Y Li$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41563-020-0657-0$$p894 -$$tNat. Mater.$$uLi, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).$$v19$$y2020
000618856 999C5 $$1M Li$$2Crossref$$9-- missing cx lookup --$$a10.1021/acsnano.0c07972$$p1077 -$$tACS Nano$$uLi, M. et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15, 1077–1085 (2021).$$v15$$y2021
000618856 999C5 $$1M Li$$2Crossref$$9-- missing cx lookup --$$a10.1021/jacs.9b00574$$p4730 -$$tJ. Am. Chem. Soc.$$uLi, M. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019).$$v141$$y2019
000618856 999C5 $$1H Ding$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.add5901$$p1130 -$$tScience$$uDing, H. et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379, 1130–1135 (2023).$$v379$$y2023
000618856 999C5 $$1C Wang$$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.202101015$$p2101015 -$$tAdv. Mater.$$uWang, C. et al. HCl-based hydrothermal etching strategy toward fluoride-free MXenes. Adv. Mater. 33, 2101015 (2021).$$v33$$y2021
000618856 999C5 $$1T Li$$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.201800887$$p6115 -$$tAngew. Chemie Int. Ed.$$uLi, T. et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chemie Int. Ed. 57, 6115–6119 (2018).$$v57$$y2018
000618856 999C5 $$1S Yang$$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.201809662$$p15491 -$$tAngew. Chem. Int. Ed.$$uYang, S. et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018).$$v57$$y2018
000618856 999C5 $$1H Shi$$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.202015627$$p8689 -$$tAngew. Chem. Int. Ed.$$uShi, H. et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60, 8689–8693 (2021).$$v60$$y2021
000618856 999C5 $$1S Lai$$2Crossref$$9-- missing cx lookup --$$a10.1039/C5NR06513E$$p19390 -$$tNanoscale$$uLai, S. et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale 7, 19390–19396 (2015).$$v7$$y2015
000618856 999C5 $$1A Saha$$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.202106294$$p2106294 -$$tAdv. Funct. Mater.$$uSaha, A. et al. Enhancing the energy storage capabilities of Ti3C2Tx MXene electrodes by atomic surface reduction. Adv. Funct. Mater. 31, 2106294 (2021).$$v31$$y2021
000618856 999C5 $$1B Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00269-012-0482-3$$p363 -$$tPhys. Chem. Miner.$$uZhou, B., Sun, Z., Yao, Y. & Pan, Y. Correlations between 11B NMR parameters and structural characters in borate and borosilicate minerals investigated by high-resolution MAS NMR and ab initio calculations. Phys. Chem. Miner. 39, 363–372 (2012).$$v39$$y2012
000618856 999C5 $$1B Ravel$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0909049505012719$$p537 -$$tJ. Synchrotron Radiat.$$uRavel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).$$v12$$y2005
000618856 999C5 $$1PP Michałowski$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41565-022-01214-0$$p1192 -$$tNat. Nanotechnol.$$uMichałowski, P. P. et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat. Nanotechnol. 17, 1192–1197 (2022).$$v17$$y2022
000618856 999C5 $$1BH Toby$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889813003531$$p544 -$$tJ. Appl. Crystallogr.$$uToby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).$$v46$$y2013
000618856 999C5 $$1J Halim$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.104202$$tPhys. Rev. B$$uHalim, J. et al. Variable range hopping and thermally activated transport in molybdenum-based MXenes. Phys. Rev. B 98, 104202 (2018).$$v98$$y2018
000618856 999C5 $$1H Němec$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jphotochem.2010.08.006$$p123 -$$tJ. Photochem. Photobiol. A$$uNěmec, H., Ǩuel, P. & Sundström, V. Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy. J. Photochem. Photobiol. A 215, 123–139 (2010).$$v215$$y2010
000618856 999C5 $$1R Ulbricht$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.543$$p543 -$$tRev. Mod. Phys.$$uUlbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).$$v83$$y2011
000618856 999C5 $$1R Dong$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41563-018-0189-z$$p1027 -$$tNat. Mater.$$uDong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nat. Mater. 17, 1027–1032 (2018).$$v17$$y2018
000618856 999C5 $$1TL Cocker$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.205439$$tPhys. Rev. B$$uCocker, T. L. et al. Microscopic origin of the Drude–Smith model. Phys. Rev. B 96, 205439 (2017).$$v96$$y2017
000618856 999C5 $$1W Zheng$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.0c01693$$p5807 -$$tNano Lett.$$uZheng, W., Bonn, M. & Wang, H. I. Photoconductivity multiplication in semiconducting few-layer MoTe2. Nano Lett. 20, 5807–5813 (2020).$$v20$$y2020
000618856 999C5 $$1X Wang$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41560-019-0339-9$$p241 -$$tNat. Energy$$uWang, X. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019).$$v4$$y2019
000618856 999C5 $$1D Wang$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.add9204$$p1242 -$$tScience$$uWang, D. et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 379, 1242–1247 (2023).$$v379$$y2023
000618856 999C5 $$1C Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41557-023-01288-w$$p1722 -$$tNat. Chem.$$uZhou, C. et al. Hybrid organic–inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces. Nat. Chem. 15, 1722–1729 (2023).$$v15$$y2023
000618856 999C5 $$1G Kresse$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.11169$$p11169 -$$tPhys. Rev. B$$uKresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).$$v54$$y1996
000618856 999C5 $$1G Kresse$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.1758$$p1758 -$$tPhys. Rev. B$$uKresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).$$v59$$y1999
000618856 999C5 $$1JP Perdew$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865$$p3865 -$$tPhys. Rev. Lett.$$uPerdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).$$v77$$y1996
000618856 999C5 $$1S Grimme$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.20495$$p1787 -$$tJ. Comput. Chem.$$uGrimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).$$v27$$y2006
000618856 999C5 $$1NG Limas$$2Crossref$$9-- missing cx lookup --$$a10.1039/C7RA11829E$$p2678 -$$tRSC Adv.$$uLimas, N. G. & Manz, T. A. Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and more. RSC Adv. 8, 2678–2707 (2018).$$v8$$y2018
000618856 999C5 $$1G Henkelman$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1323224$$p9978 -$$tJ. Chem. Phys.$$uHenkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).$$v113$$y2000
000618856 999C5 $$1G Henkelman$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1329672$$p9901 -$$tJ. Chem. Phys.$$uHenkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).$$v113$$y2000