000618824 001__ 618824
000618824 005__ 20250715170846.0
000618824 0247_ $$2doi$$a10.1140/epjc/s10052-024-12816-4
000618824 0247_ $$2INSPIRETeX$$aBussone:2023kag
000618824 0247_ $$2inspire$$ainspire:2702494
000618824 0247_ $$2ISSN$$a1434-6044
000618824 0247_ $$2ISSN$$a1434-6052
000618824 0247_ $$2arXiv$$aarXiv:2309.14154
000618824 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-07177
000618824 0247_ $$2WOS$$aWOS:001222799500003
000618824 0247_ $$2openalex$$aopenalex:W4396892621
000618824 037__ $$aPUBDB-2024-07177
000618824 041__ $$aEnglish
000618824 082__ $$a530
000618824 088__ $$2arXiv$$aarXiv:2309.14154
000618824 088__ $$2Other$$aIFT-UAM/CSIC-23-114
000618824 1001_ $$0P:(DE-HGF)0$$aBussone, Andrea$$b0
000618824 245__ $$aHadronic physics from a Wilson fermion mixed-action approach: charm quark mass and $D_{(s)}$ meson decay constants
000618824 260__ $$aHeidelberg$$bSpringer$$c2024
000618824 3367_ $$2DRIVER$$aarticle
000618824 3367_ $$2DataCite$$aOutput Types/Journal article
000618824 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734079233_1155735
000618824 3367_ $$2BibTeX$$aARTICLE
000618824 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000618824 3367_ $$00$$2EndNote$$aJournal Article
000618824 500__ $$a44 pages, 21 figures
000618824 520__ $$aWe present our first set of results for charm physics, using the mixed-action setup introduced in a companion paper [1]. Maximally twisted Wilson valence fermions are used on a sea of non-perturbatively O(a)-improved Wilson fermions, made up by CLS $N_\mathrm {\scriptstyle f}=2+1$ ensembles. Our charm-sector observables are free from $O(am_c)$ discretisation effects, without need of tuning any improvement coefficient, and show continuum-limit scaling properties consistent with leading cutoff effects of $O(a^2)$. We consider a subset of CLS ensembles – including four values of the lattice spacing and pion masses down to 200 MeV – allowing to take the continuum limit and extrapolate to the physical pion mass. A number of techniques are incorporated in the analysis in order to estimate the systematic uncertainties of our results for the charm quark mass and the $D_{(s)}$-meson decay constants. This first study of observables in the charm sector, where the emphasis has been on the control of the methodology, demonstrates the potential of our setup to achieve high-precision results.
000618824 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000618824 542__ $$2Crossref$$i2024-05-14$$uhttps://creativecommons.org/licenses/by/4.0
000618824 542__ $$2Crossref$$i2024-05-14$$uhttps://creativecommons.org/licenses/by/4.0
000618824 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000618824 650_7 $$2INSPIRE$$afermion: Wilson
000618824 650_7 $$2INSPIRE$$api: mass
000618824 650_7 $$2INSPIRE$$aquark: mass
000618824 650_7 $$2INSPIRE$$ameson: decay
000618824 650_7 $$2INSPIRE$$adown: mass
000618824 650_7 $$2INSPIRE$$afermion: valence
000618824 650_7 $$2INSPIRE$$aeffect: discrete
000618824 650_7 $$2INSPIRE$$acharm
000618824 650_7 $$2INSPIRE$$acontinuum limit
000618824 650_7 $$2INSPIRE$$ascaling
000618824 650_7 $$2INSPIRE$$alattice
000618824 650_7 $$2INSPIRE$$atwist
000618824 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000618824 7001_ $$0P:(DE-HGF)0$$aConigli, Alessandro$$b1$$eCorresponding author
000618824 7001_ $$0P:(DE-H253)PIP1095095$$aFrison, Julien Francois$$b2
000618824 7001_ $$0P:(DE-HGF)0$$aHerdoíza, Gregorio$$b3
000618824 7001_ $$aPena, Carlos$$b4
000618824 7001_ $$aPreti, David$$b5
000618824 7001_ $$aSáez, Alejandro$$b6
000618824 7001_ $$aUgarrio, Javier$$b7
000618824 7001_ $$0P:(DE-HGF)0$$aAlpha Collaboration$$b8
000618824 77318 $$2Crossref$$3journal-article$$a10.1140/epjc/s10052-024-12816-4$$bSpringer Science and Business Media LLC$$d2024-05-14$$n5$$p506$$tThe European Physical Journal C$$v84$$x1434-6052$$y2024
000618824 773__ $$0PERI:(DE-600)1459069-4$$a10.1140/epjc/s10052-024-12816-4$$gVol. 84, no. 5, p. 506$$n5$$p506$$tThe European physical journal / C$$v84$$x1434-6052$$y2024
000618824 7870_ $$0PUBDB-2024-07631$$aBussone, Andrea et.al.$$dHeidelberg : Springer, 2024$$iIsParent$$rarXiv:2309.14154 ; IFT-UAM/CSIC-23-114$$tHadronic physics from a Wilson fermion mixed-action approach: charm quark mass and $D_{(s)}$ meson decay constants
000618824 8564_ $$uhttps://bib-pubdb1.desy.de/record/618824/files/s10052-024-12816-4.pdf$$yOpenAccess
000618824 8564_ $$uhttps://bib-pubdb1.desy.de/record/618824/files/s10052-024-12816-4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000618824 909CO $$ooai:bib-pubdb1.desy.de:618824$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000618824 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095095$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000618824 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000618824 9141_ $$y2024
000618824 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000618824 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000618824 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000618824 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:14Z
000618824 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:14Z
000618824 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000618824 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000618824 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-10-21
000618824 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
000618824 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
000618824 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:14Z
000618824 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
000618824 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
000618824 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
000618824 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J C : 2022$$d2024-12-27
000618824 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-27
000618824 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-27
000618824 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
000618824 9201_ $$0I:(DE-H253)Z_ZPPT-20210408$$kZ_ZPPT$$lZeuthen Particle PhysicsTheory$$x0
000618824 980__ $$ajournal
000618824 980__ $$aVDB
000618824 980__ $$aUNRESTRICTED
000618824 980__ $$aI:(DE-H253)Z_ZPPT-20210408
000618824 9801_ $$aFullTexts
000618824 999C5 $$2Crossref$$uA. Bussone, A. Conigli, J. Frison, G. Herdoíza, C. Pena, D. Preti, J.Á. Romero, A. Sáez, J. Ugarrio, Hadronic physics from a Wilson fermion mixed-action approach: setup and scale setting (to appear)
000618824 999C5 $$1M Lüscher$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2011)104$$p104 -$$tJHEP$$uM. Lüscher, S. Schaefer, Non-renormalizability of the HMC algorithm. JHEP 04, 104 (2011). https://doi.org/10.1007/JHEP04(2011)104. arXiv:1103.1810$$v04$$y2011
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2010.11.020$$uALPHA collaboration, Critical slowing down and error analysis in lattice QCD simulations. Nucl. Phys. B 845, 93 (2011). https://doi.org/10.1016/j.nuclphysb.2010.11.020. arXiv:1009.5228
000618824 999C5 $$1K Symanzik$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(83)90468-6$$p187 -$$tNucl. Phys. B$$uK. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and $$\varphi ^4$$ theory. Nucl. Phys. B 226, 187 (1983). https://doi.org/10.1016/0550-3213(83)90468-6$$v226$$y1983
000618824 999C5 $$1K Symanzik$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(83)90469-8$$p205 -$$tNucl. Phys. B$$uK. Symanzik, Continuum limit and improved action in lattice theories. 2. O(N) Nonlinear sigma model in perturbation theory. Nucl. Phys. B 226, 205 (1983). https://doi.org/10.1016/0550-3213(83)90469-8$$v226$$y1983
000618824 999C5 $$1M Lüscher$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01206178$$p59 -$$tCommun. Math. Phys.$$uM. Lüscher, P. Weisz, On-shell improved lattice gauge theories. Commun. Math. Phys. 97, 59 (1985). https://doi.org/10.1007/BF01206178$$v97$$y1985
000618824 999C5 $$1M Lüscher$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(96)00378-1$$p365 -$$tNucl. Phys. B$$uM. Lüscher, S. Sint, R. Sommer, P. Weisz, Chiral symmetry and O(a) improvement in lattice QCD. Nucl. Phys. B 478, 365 (1996). https://doi.org/10.1016/0550-3213(96)00378-1. arXiv:hep-lat/9605038$$v478$$y1996
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-7354-7$$uFlavour Lattice Averaging Group collaboration, FLAG Review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C series 80, 113 (2020). https://doi.org/10.1140/epjc/s10052-019-7354-7. arXiv:1902.08191
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10536-1$$uFlavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021. Eur. Phys. J. C 82, 869 (2022). https://doi.org/10.1140/epjc/s10052-022-10536-1. arXiv:2111.09849
000618824 999C5 $$1M Bruno$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2015)043$$p043 -$$tJHEP$$uM. Bruno et al., Simulation of QCD with N$$_{f} =$$ 2 $$+$$ 1 flavors of non-perturbatively improved Wilson fermions. JHEP 02, 043 (2015). https://doi.org/10.1007/JHEP02(2015)043. arXiv:1411.3982$$v02$$y2015
000618824 999C5 $$1M Lüscher$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2011)036$$p036 -$$tJHEP$$uM. Lüscher, S. Schaefer, Lattice QCD without topology barriers. JHEP 07, 036 (2011). https://doi.org/10.1007/JHEP07(2011)036. arXiv:1105.4749$$v07$$y2011
000618824 999C5 $$1M Lüscher$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2012.10.003$$p519 -$$tComput. Phys. Commun.$$uM. Lüscher, S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting. Comput. Phys. Commun. 184, 519 (2013). https://doi.org/10.1016/j.cpc.2012.10.003. arXiv:1206.2809$$v184$$y2013
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2001/08/058$$uALPHA collaboration, Lattice QCD with a chirally twisted mass term. JHEP 08, 058 (2001). https://doi.org/10.1088/1126-6708/2001/08/058. arXiv:hep-lat/0101001
000618824 999C5 $$1C Pena$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2004/09/069$$p069 -$$tJHEP$$uC. Pena, S. Sint, A. Vladikas, Twisted mass QCD and lattice approaches to the Delta I = 1/2 rule. JHEP 09, 069 (2004). https://doi.org/10.1088/1126-6708/2004/09/069. arXiv:hep-lat/0405028$$v09$$y2004
000618824 999C5 $$1R Frezzotti$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2004/08/007$$p007 -$$tJHEP$$uR. Frezzotti, G.C. Rossi, Chirally improving Wilson fermions. 1. O(a) improvement. JHEP 08, 007 (2004). https://doi.org/10.1088/1126-6708/2004/08/007. arXiv:hep-lat/0306014$$v08$$y2004
000618824 999C5 $$1G Herdoíza$$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/201817513018$$p13018 -$$tEPJ Web Conf.$$uG. Herdoíza, C. Pena, D. Preti, J.A. Romero, J. Ugarrio, A tmQCD mixed-action approach to flavour physics. EPJ Web Conf. 175, 13018 (2018). https://doi.org/10.1051/epjconf/201817513018. arXiv:1711.06017$$v175$$y2018
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.334.0271$$uALPHA collaboration, First results for charm physics with a tmQCD valence action. PoS LATTICE2018, 271 (2018). https://doi.org/10.22323/1.334.0271. arXiv:1812.05458
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.334.0270$$uALPHA collaboration, Heavy-quark physics with a tmQCD valence action. PoS LATTICE2018, 270 (2019). https://doi.org/10.22323/1.334.0270. arXiv:1812.01474
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.334.0318$$uALPHA collaboration, Matching of $${N_{\rm f}}=2+1$$ CLS ensembles to a tmQCD valence sector. PoS LATTICE2018, 318 (2019). https://doi.org/10.22323/1.334.0318. arXiv:1903.00286
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.396.0091$$uA. Conigli, A. Bussone, J. Frison, G. Herdoíza, C. Pena, D. Preti, J.Á. Romero, J. Ugarrio, Charm physics with a tmQCD mixed action. PoS LATTICE2021, 091 (2022). https://doi.org/10.22323/1.396.0091. arXiv:2112.00666
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.396.0258$$uA. Bussone, A. Conigli, G. Herdoíza, J. Frison, C. Pena, D. Preti, J.Á. Romero, A. Sáez, J. Ugarrio, Light meson physics and scale setting from a mixed action with Wilson twisted mass valence quarks. PoS LATTICE2021, 258 (2022). https://doi.org/10.22323/1.396.0258
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.430.0357$$uA. Sáez, A. Conigli, J. Frison, G. Herdoíza, C. Pena, J. Ugarrio, Scale setting from a mixed action with twisted mass valence quarks. PoS LATTICE2022, 357 (2023). https://doi.org/10.22323/1.430.0357
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.430.0351$$uA. Conigli, J. Frison, G. Herdoíza, C. Pena, A. Sáez, J. Ugarrio, Towards precision charm physics with a mixed action. PoS LATTICE2022, 351 (2023). https://doi.org/10.22323/1.430.0351. arXiv:2212.11045
000618824 999C5 $$1WI Jay$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.114502$$tPhys. Rev. D$$uW.I. Jay, E.T. Neil, Bayesian model averaging for analysis of lattice field theory results. Phys. Rev. D 103, 114502 (2021). https://doi.org/10.1103/PhysRevD.103.114502. arXiv:2008.01069$$v103$$y2021
000618824 999C5 $$2Crossref$$uJ. Frison, Towards fully bayesian analyses in Lattice QCD. arXiv:2302.06550
000618824 999C5 $$1M Bruno$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2022.108643$$tComput. Phys. Commun.$$uM. Bruno, R. Sommer, On fits to correlated and auto-correlated data. Comput. Phys. Commun. 285, 108643 (2023). https://doi.org/10.1016/j.cpc.2022.108643. arXiv:2209.14188$$v285$$y2023
000618824 999C5 $$1C McNeile$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.82.034512$$tPhys. Rev. D$$uC. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel, G.P. Lepage, High-precision c and b masses, and QCD coupling from current-current correlators in lattice and continuum QCD. Phys. Rev. D 82, 034512 (2010). https://doi.org/10.1103/PhysRevD.82.034512. arXiv:1004.4285$$v82$$y2010
000618824 999C5 $$1CTH Davies$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.82.114504$$tPhys. Rev. D$$uC.T.H. Davies, C. McNeile, E. Follana, G.P. Lepage, H. Na, J. Shigemitsu, Update: precision $$D_s$$ decay constant from full lattice QCD using very fine lattices. Phys. Rev. D 82, 114504 (2010). https://doi.org/10.1103/PhysRevD.82.114504. arXiv:1008.4018$$v82$$y2010
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.85.114506$$uFermilab Lattice, MILC collaboration, B- and D-meson decay constants from three-flavor lattice QCD. Phys. Rev. D 85, 114506 (2012). https://doi.org/10.1103/PhysRevD.85.114506. arXiv:1112.3051
000618824 999C5 $$1H Na$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.86.054510$$tPhys. Rev. D$$uH. Na, C.T.H. Davies, E. Follana, G.P. Lepage, J. Shigemitsu, $$|V_{cd}|$$ from D meson leptonic decays. Phys. Rev. D 86, 054510 (2012). https://doi.org/10.1103/PhysRevD.86.054510. arXiv:1206.4936$$v86$$y2012
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2014)016$$uETM collaboration, B-physics from $${N_{\rm f}}$$ = 2 tmQCD: the Standard Model and beyond. JHEP 03, 016 (2014). https://doi.org/10.1007/JHEP03(2014)016. arXiv:1308.1851
000618824 999C5 $$1B Chakraborty$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.054508$$tPhys. Rev. D$$uB. Chakraborty, C.T.H. Davies, B. Galloway, P. Knecht, J. Koponen, G.C. Donald, R.J. Dowdall, G.P. Lepage, C. McNeile, High-precision quark masses and QCD coupling from $$n_f=4$$ lattice QCD. Phys. Rev. D 91, 054508 (2015). https://doi.org/10.1103/PhysRevD.91.054508. arXiv:1408.4169$$v91$$y2015
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2014.07.025$$uEuropean Twisted Mass collaboration, Up, down, strange and charm quark masses with N$$_f$$ = 2+1+1 twisted mass lattice QCD. Nucl. Phys. B series 887, 19 (2014). https://doi.org/10.1016/j.nuclphysb.2014.07.025. arXiv:1403.4504
000618824 999C5 $$1C Alexandrou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.90.074501$$tPhys. Rev. D$$uC. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Baryon spectrum with $${N_{\rm f} }=2+1+1$$ twisted mass fermions. Phys. Rev. D 90, 074501 (2014). https://doi.org/10.1103/PhysRevD.90.074501. arXiv:1406.4310$$v90$$y2014
000618824 999C5 $$1Y-B Yang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.034517$$tPhys. Rev. D$$uY.-B. Yang et al., Charm and strange quark masses and $$f_{D_s}$$ from overlap fermions. Phys. Rev. D 92, 034517 (2015). https://doi.org/10.1103/PhysRevD.92.034517. arXiv:1410.3343$$v92$$y2015
000618824 999C5 $$1N Carrasco$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.054507$$tPhys. Rev. D$$uN. Carrasco et al., Leptonic decay constants $$f_{K}, f_{D},$$ and $$f_{{D}_{s}}$$ with $$N_{f} = 2+1+1$$ twisted-mass lattice QCD. Phys. Rev. D 91, 054507 (2015). https://doi.org/10.1103/PhysRevD.91.054507. arXiv:1411.7908$$v91$$y2015
000618824 999C5 $$1K Nakayama$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.054507$$tPhys. Rev. D$$uK. Nakayama, B. Fahy, S. Hashimoto, Short-distance charmonium correlator on the lattice with Möbius domain-wall fermion and a determination of charm quark mass. Phys. Rev. D 94, 054507 (2016). https://doi.org/10.1103/PhysRevD.94.054507. arXiv:1606.01002$$v94$$y2016
000618824 999C5 $$1A Bazavov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.074512$$tPhys. Rev. D$$uA. Bazavov et al., $$B$$- and $$D$$-meson leptonic decay constants from four-flavor lattice QCD. Phys. Rev. D 98, 074512 (2018). https://doi.org/10.1103/PhysRevD.98.074512. arXiv:1712.09262$$v98$$y2018
000618824 999C5 $$1PA Boyle$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2017)008$$p008 -$$tJHEP$$uP.A. Boyle, L. Del Debbio, A. Jüttner, A. Khamseh, F. Sanfilippo, J.T. Tsang, The decay constants $${\mathbf{f_D} }$$ and $${\mathbf{f_{D_{s}}} }$$ in the continuum limit of $${\mathbf{{N_{\rm f}}=2+1} }$$ domain wall lattice QCD. JHEP 12, 008 (2017). https://doi.org/10.1007/JHEP12(2017)008. arXiv:1701.02644$$v12$$y2017
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.054517$$uFermilab Lattice, MILC, TUMQCD collaboration, Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD. Phys. Rev. D 98, 054517 (2018). https://doi.org/10.1103/PhysRevD.98.054517. arXiv:1802.04248
000618824 999C5 $$1R Balasubramamian$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-020-7965-z$$p412 -$$tEur. Phys. J. C$$uR. Balasubramamian, B. Blossier, Decay constant of $$B_s$$ and $$B^*_s$$ mesons from $${{N_{\rm f }}}=2$$ lattice QCD. Eur. Phys. J. C 80, 412 (2020). https://doi.org/10.1140/epjc/s10052-020-7965-z. arXiv:1912.09937$$v80$$y2020
000618824 999C5 $$1P Petreczky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.034519$$tPhys. Rev. D$$uP. Petreczky, J.H. Weber, Strong coupling constant and heavy quark masses in (2+1)-flavor QCD. Phys. Rev. D 100, 034519 (2019). https://doi.org/10.1103/PhysRevD.100.034519. arXiv:1901.06424$$v100$$y2019
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.054511$$uHPQCD collaboration, Charmonium properties from lattice $$QCD$$+QED: hyperfine splitting, $$J/\psi $$ leptonic width, charm quark mass, and $$a^c_\mu $$. Phys. Rev. D 102, 054511 (2020). https://doi.org/10.1103/PhysRevD.102.054511. arXiv: 2005.01845
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.074515$$uExtended Twisted Mass collaboration, Quark masses using twisted-mass fermion gauge ensembles. Phys. Rev. D 104, 074515 (2021). https://doi.org/10.1103/PhysRevD.104.074515. arXiv:2104.13408
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2021)288$$uALPHA collaboration, Determination of the charm quark mass in lattice QCD with $$2+1$$ flavours on fine lattices. JHEP 05, 288 (2021). https://doi.org/10.1007/JHEP05(2021)288. arXiv:2101.02694
000618824 999C5 $$1M Lüscher$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(85)90966-9$$p250 -$$tPhys. Lett. B$$uM. Lüscher, P. Weisz, Computation of the action for on-shell improved lattice gauge theories at weak coupling. Phys. Lett. B 158, 250 (1985). https://doi.org/10.1016/0370-2693(85)90966-9$$v158$$y1985
000618824 999C5 $$1B Sheikholeslami$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(85)90002-1$$p572 -$$tNucl. Phys. B$$uB. Sheikholeslami, R. Wohlert, Improved continuum limit lattice action for QCD with Wilson fermions. Nucl. Phys. B 259, 572 (1985). https://doi.org/10.1016/0550-3213(85)90002-1$$v259$$y1985
000618824 999C5 $$1M Bruno$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.074504$$tPhys. Rev. D$$uM. Bruno, T. Korzec, S. Schaefer, Setting the scale for the CLS $$2 + 1$$ flavor ensembles. Phys. Rev. D 95, 074504 (2017). https://doi.org/10.1103/PhysRevD.95.074504. arXiv:1608.08900$$v95$$y2017
000618824 999C5 $$1D Mohler$$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/201817502010$$p02010 -$$tEPJ Web Conf.$$uD. Mohler, S. Schaefer, J. Simeth, CLS 2+1 flavor simulations at physical light- and strange-quark masses. EPJ Web Conf. 175, 02010 (2018). https://doi.org/10.1051/epjconf/201817502010. arXiv:1712.04884$$v175$$y2018
000618824 999C5 $$1D Mohler$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.074506$$tPhys. Rev. D$$uD. Mohler, S. Schaefer, Remarks on strange-quark simulations with Wilson fermions. Phys. Rev. D 102, 074506 (2020). https://doi.org/10.1103/PhysRevD.102.074506. arXiv:2003.13359$$v102$$y2020
000618824 999C5 $$1KG Wilson$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.10.2445$$p2445 -$$tPhys. Rev. D$$uK.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445 (1974). https://doi.org/10.1103/PhysRevD.10.2445$$v10$$y1974
000618824 999C5 $$1R Frezzotti$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2004/10/070$$p070 -$$tJHEP$$uR. Frezzotti, G.C. Rossi, Chirally improving Wilson fermions. II. Four-quark operators. JHEP 10, 070 (2004). https://doi.org/10.1088/1126-6708/2004/10/070. arXiv:hep-lat/0407002$$v10$$y2004
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-5870-5$$uALPHA collaboration, Non-perturbative quark mass renormalisation and running in $${N_{\rm f}}=3$$ QCD. Eur. Phys. J. C 78, 387 (2018). https://doi.org/10.1140/epjc/s10052-018-5870-5. arXiv:1802.05243
000618824 999C5 $$1R Frezzotti$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2006/04/038$$p038 -$$tJHEP$$uR. Frezzotti, G. Martinelli, M. Papinutto, G.C. Rossi, Reducing cutoff effects in maximally twisted lattice QCD close to the chiral limit. JHEP 04, 038 (2006). https://doi.org/10.1088/1126-6708/2006/04/038. arXiv:hep-lat/0503034$$v04$$y2006
000618824 999C5 $$1P Dimopoulos$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2009/07/007$$p007 -$$tJHEP$$uP. Dimopoulos, H. Simma, A. Vladikas, Quenched B(K)-parameter from Osterwalder–Seiler tmQCD quarks and mass-splitting discretization effects. JHEP 07, 007 (2009). https://doi.org/10.1088/1126-6708/2009/07/007. arXiv:0902.1074$$v07$$y2009
000618824 999C5 $$1A Shindler$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2008.03.001$$p37 -$$tPhys. Rep.$$uA. Shindler, Twisted mass lattice QCD. Phys. Rep. 461, 37 (2008). https://doi.org/10.1016/j.physrep.2008.03.001. arXiv:0707.4093$$v461$$y2008
000618824 999C5 $$1M Lüscher$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2010)071$$p071 -$$tJHEP$$uM. Lüscher, Properties and uses of the Wilson flow in lattice QCD. JHEP 08, 071 (2010). https://doi.org/10.1007/JHEP08(2010)071. arXiv:1006.4518$$v08$$y2010
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2023)035$$uRQCD collaboration, Scale setting and the light baryon spectrum in N$$_{f}$$ = 2 + 1 QCD with Wilson fermions. JHEP 05, 035 (2023). https://doi.org/10.1007/JHEP05(2023)035. arXiv:2211.03744
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.396.0135$$uB. Strassberger et al., Scale setting for CLS 2+1 simulations. PoS LATTICE2021, 135 (2022). https://doi.org/10.22323/1.396.0135. arXiv:2112.06696
000618824 999C5 $$1GM de Divitiis$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.07.031$$p157 -$$tPhys. Lett. B$$uG.M. de Divitiis, R. Petronzio, N. Tantalo, Distance preconditioning for lattice Dirac operators. Phys. Lett. B 692, 157 (2010). https://doi.org/10.1016/j.physletb.2010.07.031. arXiv:1006.4028$$v692$$y2010
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.256.0368$$uS. Collins, K. Eckert, J. Heitger, S. Hofmann, W. Soeldner, Charmed pseudoscalar decay constants on three-flavour CLS ensembles with open boundaries. PoS LATTICE2016, 368 (2017). https://doi.org/10.22323/1.256.0368. arXiv: 1701.05502
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(03)00467-3$$uALPHA collaboration, Monte Carlo errors with less errors. Comput. Phys. Commun. 156, 143 (2004). https://doi.org/10.1016/S0010-4655(03)00467-3. arXiv:hep-lat/0306017
000618824 999C5 $$1A Ramos$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2018.12.020$$p19 -$$tComput. Phys. Commun.$$uA. Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput. Phys. Commun. 238, 19 (2019). https://doi.org/10.1016/j.cpc.2018.12.020. arXiv:1809.01289$$v238$$y2019
000618824 999C5 $$1B Blossier$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2009/04/094$$p094 -$$tJHEP$$uB. Blossier, M. Della Morte, G. von Hippel, T. Mendes, R. Sommer, On the generalized eigenvalue method for energies and matrix elements in lattice field theory. JHEP 04, 094 (2009). https://doi.org/10.1088/1126-6708/2009/04/094. arXiv:0902.1265$$v04$$y2009
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/ptep/ptac097$$uParticle Data Group collaboration, Review of particle physics. PTEP 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2004/08/004$$uQCD-TARO collaboration, Contribution of disconnected diagrams to the hyperfine splitting of charmonium. JHEP 08, 004 (2004). https://doi.org/10.1088/1126-6708/2004/08/004. arXiv:hep-lat/0404016
000618824 999C5 $$1GC Donald$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.86.094501$$tPhys. Rev. D$$uG.C. Donald, C.T.H. Davies, R.J. Dowdall, E. Follana, K. Hornbostel, J. Koponen, G.P. Lepage, C. McNeile, Precision tests of the $$J/{\psi }$$ from full lattice QCD: mass, leptonic width and radiative decay rate to $${\eta }_c$$. Phys. Rev. D 86, 094501 (2012). https://doi.org/10.1103/PhysRevD.86.094501. arXiv:1208.2855$$v86$$y2012
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.114509$$uHPQCD collaboration, B-meson decay constants: a more complete picture from full lattice QCD. Phys. Rev. D 91, 114509 (2015). https://doi.org/10.1103/PhysRevD.91.114509. arXiv:1503.05762
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.014513$$uHPQCD$$\dagger $$ collaboration, Precise determination of decay rates for $$\eta _c\rightarrow \gamma \gamma $$, $$J/\psi \rightarrow \gamma \eta _c$$, and $$J/\psi \rightarrow \eta _c e^+e^-$$ from lattice QCD. Phys. Rev. D 108, 014513 (2023). https://doi.org/10.1103/PhysRevD.108.014513. arXiv:2305.06231
000618824 999C5 $$1H Georgi$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(90)91128-X$$p447 -$$tPhys. Lett. B$$uH. Georgi, An effective field theory for heavy quarks at low-energies. Phys. Lett. B 240, 447 (1990). https://doi.org/10.1016/0370-2693(90)91128-X$$v240$$y1990
000618824 999C5 $$1PA Baikov$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2014)076$$p076 -$$tJHEP$$uP.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Quark mass and field anomalous dimensions to $${\cal{O}}(\alpha _s^5)$$. JHEP 10, 076 (2014). https://doi.org/10.1007/JHEP10(2014)076. arXiv:1402.6611$$v10$$y2014
000618824 999C5 $$1T Luthe$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2017)081$$p081 -$$tJHEP$$uT. Luthe, A. Maier, P. Marquard, Y. Schröder, Five-loop quark mass and field anomalous dimensions for a general gauge group. JHEP 01, 081 (2017). https://doi.org/10.1007/JHEP01(2017)081. arXiv:1612.05512$$v01$$y2017
000618824 999C5 $$1PA Baikov$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2017)119$$p119 -$$tJHEP$$uP.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators. JHEP 04, 119 (2017). https://doi.org/10.1007/JHEP04(2017)119. arXiv:1702.01458$$v04$$y2017
000618824 999C5 $$1PA Baikov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.118.082002$$tPhys. Rev. Lett.$$uP.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Five-loop running of the QCD coupling constant. Phys. Rev. Lett. 118, 082002 (2017). https://doi.org/10.1103/PhysRevLett.118.082002. arXiv:1606.08659$$v118$$y2017
000618824 999C5 $$1F Herzog$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2017)090$$p090 -$$tJHEP$$uF. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren, A. Vogt, The five-loop beta function of Yang–Mills theory with fermions. JHEP 02, 090 (2017). https://doi.org/10.1007/JHEP02(2017)090. arXiv:1701.01404$$v02$$y2017
000618824 999C5 $$1T Luthe$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2017)020$$p020 -$$tJHEP$$uT. Luthe, A. Maier, P. Marquard, Y. Schroder, Complete renormalization of QCD at five loops. JHEP 03, 020 (2017). https://doi.org/10.1007/JHEP03(2017)020. arXiv:1701.07068$$v03$$y2017
000618824 999C5 $$1T Liu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2015.05.023$$p330 -$$tPhys. Lett. B$$uT. Liu, M. Steinhauser, Decoupling of heavy quarks at four loops and effective Higgs-fermion coupling. Phys. Lett. B 746, 330 (2015). https://doi.org/10.1016/j.physletb.2015.05.023. arXiv:1502.04719$$v746$$y2015
000618824 999C5 $$1KG Chetyrkin$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(00)00155-7$$p43 -$$tComput. Phys. Commun.$$uK.G. Chetyrkin, J.H. Kuhn, M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 133, 43 (2000). https://doi.org/10.1016/S0010-4655(00)00155-7. arXiv:hep-ph/0004189$$v133$$y2000
000618824 999C5 $$1B Schmidt$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2012.03.023$$p1845 -$$tComput. Phys. Commun.$$uB. Schmidt, M. Steinhauser, CRunDec: a C++ package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 183, 1845 (2012). https://doi.org/10.1016/j.cpc.2012.03.023. arXiv:1201.6149$$v183$$y2012
000618824 999C5 $$1F Herren$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2017.11.014$$p333 -$$tComput. Phys. Commun.$$uF. Herren, M. Steinhauser, Version 3 of RunDec and CRunDec. Comput. Phys. Commun. 224, 333 (2018). https://doi.org/10.1016/j.cpc.2017.11.014. arXiv:1703.03751$$v224$$y2018
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.102001$$uALPHA collaboration, QCD coupling from a nonperturbative determination of the three-flavor $$\Lambda $$ parameter. Phys. Rev. Lett. 119, 102001 (2017). https://doi.org/10.1103/PhysRevLett.119.102001. arXiv:1706.03821
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.78.054513$$uHPQCD collaboration, High-precision charm-quark mass from current-current correlators in lattice and continuum QCD. Phys. Rev. D 78, 054513 (2008). https://doi.org/10.1103/PhysRevD.78.054513. arXiv:0805.2999
000618824 999C5 $$1Y Maezawa$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.034507$$tPhys. Rev. D$$uY. Maezawa, P. Petreczky, Quark masses and strong coupling constant in 2+1 flavor QCD. Phys. Rev. D 94, 034507 (2016). https://doi.org/10.1103/PhysRevD.94.034507. arXiv:1606.08798$$v94$$y2016
000618824 999C5 $$1B Grinstein$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(92)90248-A$$p369 -$$tNucl. Phys. B$$uB. Grinstein, E.E. Jenkins, A.V. Manohar, M.J. Savage, M.B. Wise, Chiral perturbation theory for f D(s) / f D and B B(s) / B B. Nucl. Phys. B 380, 369 (1992). https://doi.org/10.1016/0550-3213(92)90248-A. arXiv:hep-ph/9204207$$v380$$y1992
000618824 999C5 $$1JL Goity$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.46.3929$$p3929 -$$tPhys. Rev. D$$uJ.L. Goity, Chiral perturbation theory for SU(3) breaking in heavy meson systems. Phys. Rev. D 46, 3929 (1992). https://doi.org/10.1103/PhysRevD.46.3929. arXiv:hep-ph/9206230$$v46$$y1992
000618824 999C5 $$1AV Manohar$$2Crossref$$uA.V. Manohar, M.B. Wise, Heavy quark physics. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000)$$y2000
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(91)91916-J$$uX.-D. Ji, M.J. Musolf, Subleading logarithmic mass dependence in heavy meson form-factors. Phys. Lett. B 257, 409 (1991). https://doi.org/10.1016/0370-2693(91)91916-J
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.074505$$uPACS-CS collaboration, Charm quark system at the physical point of 2+1 flavor lattice QCD. Phys. Rev. D 84, 074505 (2011). https://doi.org/10.1103/PhysRevD.84.074505. arXiv:1104.4600
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1674-1137/abcd8f$$u$${\chi }$$QCD collaboration, Charmed and $$\phi $$ meson decay constants from 2+1-flavor lattice QCD. Chin. Phys. C 45, 023109 (2021). https://doi.org/10.1088/1674-1137/abcd8f. arXiv:2008.05208
000618824 999C5 $$2Crossref$$uRBC/UKQCD collaboration, SU(3)-breaking ratios for $$D_{(s)}$$ and $$B_{(s)}$$ mesons. arXiv:1812.08791
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.363.0234$$uJ. Frison, A. Bussone, G. Herdoíza, C. Pena, J.Á. Romero, J. Ugarrio, Heavy semileptonics with a fully relativistic mixed action. PoS LATTICE2019, 234 (2019). https://doi.org/10.22323/1.363.0234. arXiv:1911.02412
000618824 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.430.0408$$uJ. Frison, A. Conigli, G. Herdoíza, C. Pena, A comparison of Wilson and twisted mass valence quarks for charmed semileptonic form factors. PoS LATTICE2022, 408 (2023). https://doi.org/10.22323/1.430.0408