001     617744
005     20250929151217.0
024 7 _ |a 10.1016/j.nima.2025.170874
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-07022
|2 datacite_doi
024 7 _ |a openalex:W4412657285
|2 openalex
037 _ _ |a PUBDB-2024-07022
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a King, Finn
|0 P:(DE-H253)PIP1019720
|b 0
|e Corresponding author
245 _ _ |a Test Beam Characterization of a Digital Silicon Photomultiplier
260 _ _ |a [Amsterdam]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754639938_2558062
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Conventional silicon photomultipliers (SiPMs) are well established as light detectors with single-photon-detection capability and used throughout high energy physics, medical, and commercial applications. The possibility to produce single photon avalanche diodes (SPADs) in commercial CMOS processes creates the opportunity to combine a matrix of SPADs and an application-specific integrated circuit in the same die. The potential of such digital SiPMs (dSiPMs) is still being explored, while it already is an established technology in certain applications, like light detection and ranging (LiDAR). A prototype dSiPM, produced in the LFoundry 150-nm CMOS technology, was designed and tested at DESY. The dSiPM central part is a matrix of 32 by 32 pixels. Each pixel contains four SPADs, a digital front-end, and has an area of 69.6 × 76 µm2. The chip has four time-to-digital converters and includes further circuitry for data serialization and data links.This work focuses on the characterization of the prototype in an electron beam at the DESY II Test Beam facility, to study its capability as a tracking and timing detector for minimum ionizing particles (MIPs). The MIP detection efficiency is found to be dominated by the fill factor and on the order of 31 %. The position of the impinging MIPs can be measured with a precision of about 20 µm, and the time of the interaction can be measured with a precision better than 50 ps for about 85 % of the detected events. In addition, laboratory studies on the breakdown voltage, dark count rate, and crosstalk probability, as well as the experimental methods required for the characterization of such a sensor type in a particle beam are presented.
536 _ _ |a 622 - Detector Technologies and Systems (POF4-622)
|0 G:(DE-HGF)POF4-622
|c POF4-622
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a DESY II
|f DESY: TestBeamline 21
|1 EXP:(DE-H253)DESYII-20150101
|0 EXP:(DE-H253)TestBeamline21-20150101
|6 EXP:(DE-H253)TestBeamline21-20150101
|x 0
700 1 _ |a Diehl, Inge
|0 P:(DE-H253)PIP1000066
|b 1
700 1 _ |a Feyens, Ono
|0 P:(DE-H253)PIP1111403
|b 2
700 1 _ |a Gregor, Ingrid-Maria
|0 P:(DE-H253)PIP1004563
|b 3
700 1 _ |a Hansen, Karsten
|0 P:(DE-H253)PIP1003149
|b 4
700 1 _ |a Lachnit, Stephan
|0 P:(DE-H253)PIP1098944
|b 5
700 1 _ |a Poblotzki, Frauke
|0 P:(DE-H253)PIP1032279
|b 6
700 1 _ |a Rastorguev, Daniil
|0 P:(DE-H253)PIP1099910
|b 7
700 1 _ |a Spannagel, Simon
|0 P:(DE-H253)PIP1018940
|b 8
700 1 _ |a Vanat, Tomas
|0 P:(DE-H253)PIP1087423
|b 9
700 1 _ |a Vignola, Gianpiero
|0 P:(DE-H253)PIP1099070
|b 10
773 _ _ |a 10.1016/j.nima.2025.170874
|g Vol. 1081, p. 170874 -
|0 PERI:(DE-600)1466532-3
|p 170874
|t Nuclear instruments & methods in physics research / Section A
|v 1081
|y 2025
|x 0167-5087
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S016890022500676X?via%3Dihub
856 4 _ |u https://bib-pubdb1.desy.de/record/617744/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/617744/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/617744/files/1-s2.0-S016890022500676X-main.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/617744/files/1-s2.0-S016890022500676X-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:617744
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1019720
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1000066
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1111403
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1004563
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1003149
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1098944
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1032279
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1099910
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1018940
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1087423
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1087423
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1099070
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-622
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Detector Technologies and Systems
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL INSTRUM METH A : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
920 1 _ |0 I:(DE-H253)ATLAS-20120731
|k ATLAS
|l LHC/ATLAS Experiment
|x 0
920 1 _ |0 I:(DE-H253)CMS-20120731
|k CMS
|l LHC/CMS Experiment
|x 1
920 1 _ |0 I:(DE-H253)FE-20120731
|k FE
|l Koordination Elektronik Entwicklung
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)ATLAS-20120731
980 _ _ |a I:(DE-H253)CMS-20120731
980 _ _ |a I:(DE-H253)FE-20120731
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21