Home > Publications database > Large language models for human-machine collaborative particle accelerator tuning through natural language > print |
001 | 617676 | ||
005 | 20250715151509.0 | ||
024 | 7 | _ | |a Kaiser:2024lkg |2 INSPIRETeX |
024 | 7 | _ | |a inspire:2787129 |2 inspire |
024 | 7 | _ | |a arXiv:2405.08888 |2 arXiv |
024 | 7 | _ | |a 10.1126/sciadv.adr4173 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-06977 |2 datacite_doi |
024 | 7 | _ | |a altmetric:172607705 |2 altmetric |
024 | 7 | _ | |a pmid:39742494 |2 pmid |
024 | 7 | _ | |a WOS:001386432700013 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4405967751 |
037 | _ | _ | |a PUBDB-2024-06977 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Kaiser, Jan |0 P:(DE-H253)PIP1095111 |b 0 |e Corresponding author |
245 | _ | _ | |a Large language models for human-machine collaborative particle accelerator tuning through natural language |
260 | _ | _ | |a Washington, DC [u.a.] |c 2025 |b Assoc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1736343003_3333182 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Autonomous tuning of particle accelerators is an active and challenging research field with the goal of enabling advanced accelerator technologies and cutting-edge high-impact applications, such as physics discovery, cancer research, and material sciences. A challenge with autonomous accelerator tuning remains that the most capable algorithms require experts in optimization and machine learning to implement them for every new tuning task. Here, we propose the use of large language models (LLMs) to tune particle accelerators. We demonstrate on a proof-of-principle example the ability of LLMs to tune an accelerator subsystem based on only a natural language prompt from the operator, and compare their performance to state-of-the-art optimization algorithms, such as Bayesian optimization and reinforcement learning–trained optimization. In doing so, we also show how LLMs can perform numerical optimization of a nonlinear real-world objective. Ultimately, this work represents another complex task that LLMs can solve and promises to help accelerate the deployment of autonomous tuning algorithms to day-to-day particle accelerator operations. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
536 | _ | _ | |a InternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011) |0 G:(DE-HGF)2020_InternLabs-0011 |c 2020_InternLabs-0011 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a SINBAD |e Accelerator Research Experiment at SINBAD |1 EXP:(DE-H253)SINBAD-20200101 |0 EXP:(DE-H253)ARES-20200101 |5 EXP:(DE-H253)ARES-20200101 |x 0 |
700 | 1 | _ | |a Lauscher, Anne |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Eichler, Annika |0 P:(DE-H253)PIP1087213 |b 2 |
773 | _ | _ | |a 10.1126/sciadv.adr4173 |g Vol. 11, no. 1, p. eadr4173 |0 PERI:(DE-600)2810933-8 |n 1 |p eadr4173 |t Science advances |v 11 |y 2025 |x 2375-2548 |
787 | 0 | _ | |a Kaiser, Jan et.al. |d 2024 |i IsParent |0 PUBDB-2024-01644 |r arXiv:2405.08888 |t Large Language Models for Human-Machine Collaborative Particle Accelerator Tuning through Natural Language |
856 | 4 | _ | |u https://doi.org/10.1126/sciadv.adr4173 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/617676/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/617676/files/Invoice.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/617676/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/617676/files/Invoice.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/617676/files/publisher%27s%20fulltext.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/617676/files/publisher%27s%20fulltext.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:617676 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1095111 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1087213 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1087213 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-28 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-28 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI ADV : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-05-14T07:33:42Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-05-14T07:33:42Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-05-14T07:33:42Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SCI ADV : 2022 |d 2024-12-18 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 1 | _ | |0 I:(DE-H253)MSK-20120731 |k MSK |l Strahlkontrollen |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)MSK-20120731 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|