001     617676
005     20250715151509.0
024 7 _ |a Kaiser:2024lkg
|2 INSPIRETeX
024 7 _ |a inspire:2787129
|2 inspire
024 7 _ |a arXiv:2405.08888
|2 arXiv
024 7 _ |a 10.1126/sciadv.adr4173
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-06977
|2 datacite_doi
024 7 _ |a altmetric:172607705
|2 altmetric
024 7 _ |a pmid:39742494
|2 pmid
024 7 _ |a WOS:001386432700013
|2 WOS
024 7 _ |2 openalex
|a openalex:W4405967751
037 _ _ |a PUBDB-2024-06977
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Kaiser, Jan
|0 P:(DE-H253)PIP1095111
|b 0
|e Corresponding author
245 _ _ |a Large language models for human-machine collaborative particle accelerator tuning through natural language
260 _ _ |a Washington, DC [u.a.]
|c 2025
|b Assoc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736343003_3333182
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Autonomous tuning of particle accelerators is an active and challenging research field with the goal of enabling advanced accelerator technologies and cutting-edge high-impact applications, such as physics discovery, cancer research, and material sciences. A challenge with autonomous accelerator tuning remains that the most capable algorithms require experts in optimization and machine learning to implement them for every new tuning task. Here, we propose the use of large language models (LLMs) to tune particle accelerators. We demonstrate on a proof-of-principle example the ability of LLMs to tune an accelerator subsystem based on only a natural language prompt from the operator, and compare their performance to state-of-the-art optimization algorithms, such as Bayesian optimization and reinforcement learning–trained optimization. In doing so, we also show how LLMs can perform numerical optimization of a nonlinear real-world objective. Ultimately, this work represents another complex task that LLMs can solve and promises to help accelerate the deployment of autonomous tuning algorithms to day-to-day particle accelerator operations.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a InternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011)
|0 G:(DE-HGF)2020_InternLabs-0011
|c 2020_InternLabs-0011
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a SINBAD
|e Accelerator Research Experiment at SINBAD
|1 EXP:(DE-H253)SINBAD-20200101
|0 EXP:(DE-H253)ARES-20200101
|5 EXP:(DE-H253)ARES-20200101
|x 0
700 1 _ |a Lauscher, Anne
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Eichler, Annika
|0 P:(DE-H253)PIP1087213
|b 2
773 _ _ |a 10.1126/sciadv.adr4173
|g Vol. 11, no. 1, p. eadr4173
|0 PERI:(DE-600)2810933-8
|n 1
|p eadr4173
|t Science advances
|v 11
|y 2025
|x 2375-2548
787 0 _ |a Kaiser, Jan et.al.
|d 2024
|i IsParent
|0 PUBDB-2024-01644
|r arXiv:2405.08888
|t Large Language Models for Human-Machine Collaborative Particle Accelerator Tuning through Natural Language
856 4 _ |u https://doi.org/10.1126/sciadv.adr4173
856 4 _ |u https://bib-pubdb1.desy.de/record/617676/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/617676/files/Invoice.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/617676/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/617676/files/Invoice.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/617676/files/publisher%27s%20fulltext.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/617676/files/publisher%27s%20fulltext.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:617676
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1095111
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1087213
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1087213
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI ADV : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-05-14T07:33:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-05-14T07:33:42Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-05-14T07:33:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SCI ADV : 2022
|d 2024-12-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MSK-20120731
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21