001     617635
005     20250723172850.0
024 7 _ |2 doi
|a 10.1088/1367-2630/ad295b
024 7 _ |2 datacite_doi
|a 10.3204/PUBDB-2024-06941
024 7 _ |2 altmetric
|a altmetric:160389047
024 7 _ |a WOS:001176689700001
|2 WOS
024 7 _ |a openalex:W4391824425
|2 openalex
037 _ _ |a PUBDB-2024-06941
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Hoeppe, Hannes P
|b 0
245 _ _ |a The collapse of a sonoluminescent cavitation bubble imaged with X-ray free-electron laser pulses
260 _ _ |a [London]
|b IOP
|c 2024
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1737466528_4103067
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
500 _ _ |a DFG grant Me 1645/5-2.
520 _ _ |a Single bubble sonoluminescence (SBSL) is the phenomenon of synchronous light emission due to the violent collapse of a single spherical bubble in a liquid, driven by an ultrasonic field. During the bubble collapse, matter inside the bubble reaches extreme conditions of several gigapascals and temperatures on the order of 10000 K, leading to picosecond flashes of visible light. To this day, details regarding the energy focusing mechanism rely on simulations due to the fast dynamics of the bubble collapse and spatial scales below the optical resolution limit. In this work we present phase-contrast holographic imaging with single x-ray free-electron laser (XFEL) pulses of a SBSL cavitation bubble in water. X-rays probe the electron density structure and by that provide a uniquely new view on the bubble interior and its collapse dynamics. The involved fast time-scales are accessed by sub-100 fs XFEL pulses and a custom synchronization scheme for the bubble oscillator. We find that during the whole oscillation cycle the bubble's density profile can be well described by a simple step-like structure, with the radius R following the dynamics of the Gilmore model. The quantitatively measured internal density and width of the boundary layer exhibit a large variance. Smallest reconstructed bubble sizes reach down to R ≃ 0.8 μm, and are consistent with spherical symmetry. While we here achieved a spatial resolution of a few 100 nm, the visibility of the bubble and its internal structure is limited by the total x-ray phase shift which can be scaled with experimental parameters.
536 _ _ |0 G:(DE-HGF)POF4-631
|a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|c POF4-631
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)2019_IVF-HIDSS-0002
|a HIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter (2019_IVF-HIDSS-0002)
|c 2019_IVF-HIDSS-0002
|x 1
542 _ _ |2 Crossref
|i 2024-03-05
|u http://creativecommons.org/licenses/by/4.0
542 _ _ |2 Crossref
|i 2024-03-05
|u https://iopscience.iop.org/info/page/text-and-data-mining
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-H253)XFEL-SASE2-20150101
|1 EXP:(DE-H253)XFEL-20150101
|6 EXP:(DE-H253)XFEL-SASE2-20150101
|a XFEL
|f XFEL Beamline SASE 2
|x 0
700 1 _ |0 P:(DE-H253)PIP1011696
|a Osterhoff, Markus
|b 1
700 1 _ |0 0009-0001-8771-1707
|a Aghel Maleki, Atiyeh
|b 2
700 1 _ |a Rosselló, Juan M
|b 3
700 1 _ |a Vassholz, Malte
|b 4
700 1 _ |0 P:(DE-H253)PIP1025514
|a Hagemann, Johannes
|b 5
700 1 _ |0 P:(DE-H253)PIP1084972
|a Engler, Thea
|b 6
700 1 _ |a Schwarz, Daniel
|b 7
700 1 _ |a Rodriguez-Fernandez, Angel
|b 8
700 1 _ |0 P:(DE-H253)PIP1008487
|a Boesenberg, Ulrike
|b 9
700 1 _ |a Möller, Johannes
|b 10
700 1 _ |a Shayduk, Roman
|b 11
700 1 _ |a Hallmann, Jörg
|b 12
700 1 _ |a Madsen, Anders
|b 13
700 1 _ |a Mettin, Robert
|b 14
700 1 _ |0 P:(DE-H253)PIP1007848
|a Salditt, Tim
|b 15
|e Corresponding author
773 1 8 |2 Crossref
|3 journal-article
|a 10.1088/1367-2630/ad295b
|b IOP Publishing
|d 2024-03-01
|n 3
|p 033002
|t New Journal of Physics
|v 26
|x 1367-2630
|y 2024
773 _ _ |0 PERI:(DE-600)1464444-7
|a 10.1088/1367-2630/ad295b
|g Vol. 26, no. 3, p. 033002 -
|n 3
|p 033002
|t New journal of physics
|v 26
|x 1367-2630
|y 2024
856 4 _ |u https://bib-pubdb1.desy.de/record/617635/files/Hoeppe_2024_New_J._Phys._26_033002.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/617635/files/Hoeppe_2024_New_J._Phys._26_033002.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:617635
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1011696
|a European XFEL
|b 1
|k XFEL.EU
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1011696
|a External Institute
|b 1
|k Extern
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1025514
|a Deutsches Elektronen-Synchrotron
|b 5
|k DESY
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1084972
|a Deutsches Elektronen-Synchrotron
|b 6
|k DESY
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1008487
|a European XFEL
|b 9
|k XFEL.EU
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1007848
|a External Institute
|b 15
|k Extern
913 1 _ |0 G:(DE-HGF)POF4-631
|1 G:(DE-HGF)POF4-630
|2 G:(DE-HGF)POF4-600
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
|d 2024-12-17
|w ger
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NEW J PHYS : 2022
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2024-08-08T17:02:41Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2024-08-08T17:02:41Z
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Anonymous peer review, Double anonymous peer review
|d 2024-08-08T17:02:41Z
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2024-12-17
920 1 _ |0 I:(DE-H253)FS-PETRA-20140814
|k FS-PETRA
|l FS-PETRA
|x 0
920 1 _ |0 I:(DE-H253)XFEL_E1_MID-20210408
|k XFEL_E1_MID
|l MID
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-PETRA-20140814
980 _ _ |a I:(DE-H253)XFEL_E1_MID-20210408
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |1 Frenzel
|2 Crossref
|9 -- missing cx lookup --
|a 10.1515/zpch-1934-2737
|p 421 -
|t Z. Phys. Chem.
|v 27B
|y 1934
999 C 5 |1 Putterman
|2 Crossref
|9 -- missing cx lookup --
|a 10.1146/annurev.fluid.32.1.445
|p 445 -
|t Annu. Rev. Fluid Mech.
|v 32
|y 2000
999 C 5 |1 Ronald Young
|2 Crossref
|o Ronald Young 2004
|y 2004
999 C 5 |1 Barber
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/352318a0
|p 318 -
|t Nature
|v 352
|y 1991
999 C 5 |1 Felipe Gaitan
|2 Crossref
|9 -- missing cx lookup --
|a 10.1121/1.402855
|p 3166 -
|t J. Acoust. Soc. Am.
|v 91
|y 1992
999 C 5 |1 Hiller
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.69.1182
|p 1182 -
|t Phys. Rev. Lett.
|v 69
|y 1992
999 C 5 |1 Hiller
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.80.1090
|p 1090 -
|t Phys. Rev. Lett.
|v 80
|y 1998
999 C 5 |1 Hilgenfeldt
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/1.869997
|p 1318 -
|t Phys. Fluids
|v 11
|y 1999
999 C 5 |1 Brenner
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/RevModPhys.74.425
|p 425 -
|t Rev. Mod. Phys.
|v 74
|y 2002
999 C 5 |1 Lauterborn
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/0034-4885/73/10/106501
|t Rep. Prog. Phys.
|v 73
|y 2010
999 C 5 |1 Lauterborn
|2 Crossref
|o Lauterborn 2014
|y 2014
999 C 5 |1 Yasui
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevE.60.1754
|p 1754 -
|t Phys. Rev. E
|v 60
|y 1999
999 C 5 |1 Puente
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevE.72.046305
|t Phys. Rev. E
|v 72
|y 2005
999 C 5 |1 Flannigan
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nature03361
|p 52 -
|t Nature
|v 434
|y 2005
999 C 5 |1 Wu
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.70.3424
|p 3424 -
|t Phys. Rev. Lett.
|v 70
|y 1993
999 C 5 |1 Moss
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/1.868124
|p 2979 -
|t Phys. Fluids
|v 6
|y 1994
999 C 5 |1 Vuong
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/1.869920
|p 10 -
|t Phys. Fluids
|v 11
|y 1999
999 C 5 |1 Lauterborn
|2 Crossref
|o Lauterborn 2004
|y 2004
999 C 5 |1 Schanz
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/1367-2630/14/11/113019
|t New J. Phys.
|v 14
|y 2012
999 C 5 |1 Weninger
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.78.1799
|p 1799 -
|t Phys. Rev. Lett.
|v 78
|y 1997
999 C 5 |1 Pecha
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.84.1328
|p 1328 -
|t Phys. Rev. Lett.
|v 84
|y 2000
999 C 5 |1 Gompf
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevE.61.5253
|p 5253 -
|t Phys. Rev. E
|v 61
|y 2000
999 C 5 |1 Vagovič
|2 Crossref
|9 -- missing cx lookup --
|a 10.1364/OPTICA.6.001106
|p 1106 -
|t Optica
|v 6
|y 2019
999 C 5 |1 Zhang
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/5.0029963
|t Phys. Fluids
|v 32
|y 2020
999 C 5 |1 Hagemann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1107/S160057752001557X
|p 52 -
|t J. Synchrotron Radiat.
|v 28
|y 2021
999 C 5 |1 Vassholz
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/s41467-021-23664-1
|p 3468 -
|t Nat. Commun.
|v 12
|y 2021
999 C 5 |1 Vassholz
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/5.0131457
|t Phys. Fluids
|v 35
|y 2023
999 C 5 |1 Bokman
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/5.0132104
|t Phys. Fluids
|v 35
|y 2023
999 C 5 |1 Xiang
|2 Crossref
|o Xiang 2023
|y 2023
999 C 5 |1 Rosselló
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s00348-023-03759-9
|p 20 -
|t Exp. Fluids
|v 65
|y 2024
999 C 5 |1 Osterhoff
|2 Crossref
|9 -- missing cx lookup --
|a 10.1107/S1600577521003052
|p 987 -
|t J. Synchrotron Radiat.
|v 28
|y 2021
999 C 5 |1 Madsen
|2 Crossref
|9 -- missing cx lookup --
|a 10.1107/S1600577521001302
|p 2021 -
|t J. Synchrotron Radiat.
|v 28
|y 2021
999 C 5 |1 Echelmeier
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s00216-019-01977-x
|p 6535 -
|t Anal. Bioanal. Chem.
|v 411
|y 2019
999 C 5 |1 Lengeler
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/0022-3727/38/10A/042
|p A218 -
|t J. Phys. D: Appl. Phys.
|v 38
|y 2005
999 C 5 |1 Seiboth
|2 Crossref
|9 -- missing cx lookup --
|a 10.1107/S1600577520007900
|p 1121 -
|t J. Synchrotron Radiat.
|v 27
|y 2020
999 C 5 |1 Paganin
|2 Crossref
|o Paganin 2006
|y 2006
999 C 5 |1 Bartels
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.114.048103
|t Phys. Rev. Lett.
|v 114
|y 2015
999 C 5 |1 Schropp
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/srep01633
|p 1633 -
|t Sci. Rep.
|v 3
|y 2013
999 C 5 |1 Van Nieuwenhove
|2 Crossref
|9 -- missing cx lookup --
|a 10.1364/OE.23.027975
|p 27975 -
|t Opt. Express
|v 23
|y 2015
999 C 5 |1 Baddour
|2 Crossref
|9 -- missing cx lookup --
|a 10.1364/JOSAA.26.001767
|p 1767 -
|t J. Opt. Soc. Am. A
|v 26
|y 2009
999 C 5 |1 Gilmore.
|2 Crossref
|o Gilmore. 1952
|y 1952
999 C 5 |1 Lohse
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.78.1359
|p 1359 -
|t Phys. Rev. Lett.
|v 78
|y 1997
999 C 5 |1 Koch
|2 Crossref
|9 -- missing cx lookup --
|a 10.1121/1.3626159
|p 3370 -
|t J. Acoust. Soc. Am.
|v 130
|y 2011
999 C 5 |1 Hilgenfeldt
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/1.869131
|p 2808 -
|t Phys. Fluids
|v 8
|y 1996
999 C 5 |1 Bogoyavlenskiy.
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevE.62.2158
|p 2158 -
|t Phys. Rev. E
|v 62
|y 2000
999 C 5 |1 Matula
|2 Crossref
|9 -- missing cx lookup --
|a 10.1121/1.421279
|p 1377 -
|t J. Acoust. Soc. Am.
|v 103
|y 1998
999 C 5 |1 Holzfuss
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.81.5434
|p 5434 -
|t Phys. Rev. Lett.
|v 81
|y 1998
999 C 5 |1 Cairós
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.118.064301
|t Phys. Rev. Lett.
|v 118
|y 2017
999 C 5 |1 Amann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nphoton.2012.180
|p 693 -
|t Nat. Photon.
|v 6
|y 2012
999 C 5 |1 Nam
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/s41566-021-00777-z
|p 435 -
|t Nat. Photon.
|v 15
|y 2021
999 C 5 |1 Liu
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/s41566-023-01305-x
|p 984 -
|t Nat. Photon.
|v 17
|y 2023
999 C 5 |1 Englert
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevE.83.046306
|t Phys. Rev. E
|v 83
|y 2011
999 C 5 |1 Urteaga
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevE.79.016306
|t Phys. Rev. E
|v 79
|y 2009
999 C 5 |1 Rosselló
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.127.044502
|t Phys. Rev. Lett.
|v 127
|y 2021
999 C 5 |1 Salditt
|2 Crossref
|9 -- missing cx lookup --
|a 10.22003/XFEL.EU-DATA-002807-00
|y 2021


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21