Home > Publications database > Kitaev interactions through extended superexchange pathways in the ${j}_{{\mathsf{eff}}}=1/2$ Ru$^{3+}$ honeycomb magnet RuP$_3$SiO$_{11}$ > print |
001 | 617380 | ||
005 | 20250715171009.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-53900-3 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-06741 |2 datacite_doi |
024 | 7 | _ | |a altmetric:161245269 |2 altmetric |
024 | 7 | _ | |a pmid:39548058 |2 pmid |
024 | 7 | _ | |a WOS:001356232600011 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4404391607 |
037 | _ | _ | |a PUBDB-2024-06741 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Abdeldaim, Aly |0 P:(DE-H253)PIP1100255 |b 0 |e Corresponding author |
245 | _ | _ | |a Kitaev interactions through extended superexchange pathways in the ${j}_{{\mathsf{eff}}}=1/2$ Ru$^{3+}$ honeycomb magnet RuP$_3$SiO$_{11}$ |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738142529_3341516 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru$^{3+}$ octahedra within the honeycomb layers of the inorganic framework solid, RuP$_3$SiO$_{11}$. We confirm the requisite ${j}_{{\mathsf{eff}}}=1/2$ state of Ru$^{3+}$ in RuP$_3$SiO$_{11}$ and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
536 | _ | _ | |a DFG project G:(GEPRIS)492547816 - TRR 360: Eingeschränkte Quantenmaterie (492547816) |0 G:(GEPRIS)492547816 |c 492547816 |x 2 |
542 | _ | _ | |i 2024-11-15 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-11-15 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P01 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P01-20150101 |6 EXP:(DE-H253)P-P01-20150101 |x 0 |
700 | 1 | _ | |a Gretarsson, Hlynur |0 P:(DE-H253)PIP1029079 |b 1 |
700 | 1 | _ | |a Day, Sarah J. |b 2 |
700 | 1 | _ | |a Le, M. Duc |0 P:(DE-H253)PIP1103648 |b 3 |
700 | 1 | _ | |a Stenning, Gavin B. G. |b 4 |
700 | 1 | _ | |a Manuel, Pascal |0 P:(DE-H253)PIP1023920 |b 5 |
700 | 1 | _ | |a Perry, Robin S. |0 0000-0002-1825-2201 |b 6 |
700 | 1 | _ | |a Tsirlin, Alexander A. |0 P:(DE-H253)PIP1014467 |b 7 |
700 | 1 | _ | |a Nilsen, Gøran J. |0 0000-0002-0148-0486 |b 8 |e Corresponding author |
700 | 1 | _ | |a Clark, Lucy |0 P:(DE-H253)PIP1100396 |b 9 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s41467-024-53900-3 |b Springer Science and Business Media LLC |d 2024-11-15 |n 1 |p 9778 |3 journal-article |2 Crossref |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
773 | _ | _ | |a 10.1038/s41467-024-53900-3 |g Vol. 15, no. 1, p. 9778 |0 PERI:(DE-600)2553671-0 |n 1 |p 9778 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/617380/files/s41467-024-53900-3.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/617380/files/s41467-024-53900-3.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:617380 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1100255 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1029079 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 3 |6 P:(DE-H253)PIP1103648 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1103648 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1023920 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1014467 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1100396 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-S-20210408 |k FS-PETRA-S |l PETRA-S |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-S-20210408 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1103/PhysRevLett.50.1153 |9 -- missing cx lookup -- |1 FDM Haldane |p 1153 - |2 Crossref |u Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983). |t Phys. Rev. Lett. |v 50 |y 1983 |
999 | C | 5 | |a 10.1088/0022-3719/6/7/010 |9 -- missing cx lookup -- |1 JM Kosterlitz |p 1181 - |2 Crossref |u Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973). |t J. Phys. C |v 6 |y 1973 |
999 | C | 5 | |a 10.1038/s41586-021-04105-x |9 -- missing cx lookup -- |1 BA Bernevig |p 41 - |2 Crossref |u Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022). |t Nature |v 603 |y 2022 |
999 | C | 5 | |a 10.1038/nphys3826 |9 -- missing cx lookup -- |1 C Balz |p 942 - |2 Crossref |u Balz, C. et al. Physical realization of a quantum spin liquid based on a complex frustration mechanism. Nat. Phys. 12, 942–949 (2016). |t Nat. Phys. |v 12 |y 2016 |
999 | C | 5 | |a 10.1126/science.aay0668 |9 -- missing cx lookup -- |1 C Broholm |p 0668 - |2 Crossref |u Broholm, C. et al. Quantum spin liquids. Science 367, 0668 (2020). |t Science |v 367 |y 2020 |
999 | C | 5 | |a 10.1146/annurev-matsci-080819-011453 |9 -- missing cx lookup -- |1 L Clark |p 495 - |2 Crossref |u Clark, L. & Abdeldaim, A. H. Quantum spin liquids from a materials perspective. Annu. Rev. Mater. Sci. 51, 495–519 (2021). |t Annu. Rev. Mater. Sci. |v 51 |y 2021 |
999 | C | 5 | |a 10.1088/0034-4885/80/1/016502 |9 -- missing cx lookup -- |1 L Savary |p 016502 - |2 Crossref |u Savary, L. & Balents, L. Quantum spin liquids: A review. Rep. Prog. Phys. 80, 016502 (2016). |t Rep. Prog. Phys. |v 80 |y 2016 |
999 | C | 5 | |a 10.1146/annurev-conmatphys-033117-053934 |9 -- missing cx lookup -- |1 M Hermanns |p 17 - |2 Crossref |u Hermanns, M., Kimchi, I. & Knolle, J. Physics of the Kitaev model: Fractionalization, dynamic correlations, and material connections. Annu. Rev. Condens. Matter Phys. 9, 17–33 (2018). |t Annu. Rev. Condens. Matter Phys. |v 9 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevLett.98.117205 |9 -- missing cx lookup -- |1 Y Ran |p 117205 - |2 Crossref |u Ran, Y., Hermele, M., Lee, P. A. & Wen, X.-G. Projected-wave-function study of the spin-1/2 Heisenberg model on the kagomé lattice. Phys. Rev. Lett. 98, 117205 (2007). |t Phys. Rev. Lett. |v 98 |y 2007 |
999 | C | 5 | |a 10.1126/science.1201080 |9 -- missing cx lookup -- |1 S Yan |p 1173 - |2 Crossref |u Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011). |t Science |v 332 |y 2011 |
999 | C | 5 | |a 10.1103/RevModPhys.88.041002 |9 -- missing cx lookup -- |1 MR Norman |p 041002 - |2 Crossref |u Norman, M. R. Colloquium: Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016). |t Rev. Mod. Phys. |v 88 |y 2016 |
999 | C | 5 | |a 10.1038/nature11659 |9 -- missing cx lookup -- |1 T-H Han |p 406 - |2 Crossref |u Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012). |t Nature |v 492 |y 2012 |
999 | C | 5 | |a 10.1126/science.aab2120 |9 -- missing cx lookup -- |1 M Fu |p 655 - |2 Crossref |u Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet. Science 350, 655–658 (2015). |t Science |v 350 |y 2015 |
999 | C | 5 | |a 10.1038/s41567-020-0792-1 |9 -- missing cx lookup -- |1 P Khuntia |p 469 - |2 Crossref |u Khuntia, P. et al. Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2. Nat. Phys. 16, 469–474 (2020). |t Nat. Phys. |v 16 |y 2020 |
999 | C | 5 | |a 10.1016/j.aop.2005.10.005 |9 -- missing cx lookup -- |1 A Kitaev |p 2 - |2 Crossref |u Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006). |t Ann. Phys. |v 321 |y 2006 |
999 | C | 5 | |a 10.1088/1361-648X/aa8cf5 |9 -- missing cx lookup -- |1 SM Winter |p 493002 - |2 Crossref |u Winter, S. M. et al. Models and materials for generalized Kitaev magnetism. J. Phys. Condens. Matter. 29, 493002 (2017). |t J. Phys. Condens. Matter. |v 29 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevResearch.2.033011 |9 -- missing cx lookup -- |1 PA Maksimov |p 033011 - |2 Crossref |u Maksimov, P. A. & Chernyshev, A. L. Rethinking α-RuCl3. Phys. Rev. Res. 2, 033011 (2020). |t Phys. Rev. Res. |v 2 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevLett.102.017205 |9 -- missing cx lookup -- |1 G Jackeli |p 017205 - |2 Crossref |u Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009). |t Phys. Rev. Lett. |v 102 |y 2009 |
999 | C | 5 | |a 10.1103/PhysRevLett.123.037203 |9 -- missing cx lookup -- |1 PP Stavropoulos |p 037203 - |2 Crossref |u Stavropoulos, P. P., Pereira, D. & Kee, H.-Y. Microscopic mechanism for a higher-spin Kitaev model. Phys. Rev. Lett. 123, 037203 (2019). |t Phys. Rev. Lett. |v 123 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevB.97.014407 |9 -- missing cx lookup -- |1 H Liu |p 014407 - |2 Crossref |u Liu, H. & Khaliullin, G. Pseudospin exchange interactions in d7 cobalt compounds: Possible realization of the Kitaev model. Phys. Rev. B 97, 014407 (2018). |t Phys. Rev. B |v 97 |y 2018 |
999 | C | 5 | |a 10.1088/1361-648X/ab8525 |9 -- missing cx lookup -- |1 Y Motome |p 404001 - |2 Crossref |u Motome, Y., Sano, R., Jang, S., Sugita, Y. & Kato, Y. Materials design of Kitaev spin liquids beyond the Jackeli–Khaliullin mechanism. J. Phys. Condens. Matter. 32, 404001 (2020). |t J. Phys. Condens. Matter. |v 32 |y 2020 |
999 | C | 5 | |a 10.1038/s42254-019-0038-2 |9 -- missing cx lookup -- |1 H Takagi |p 264 - |2 Crossref |u Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019). |t Nat. Rev. Phys. |v 1 |y 2019 |
999 | C | 5 | |a 10.7566/JPSJ.89.114709 |9 -- missing cx lookup -- |1 K Kataoka |p 114709 - |2 Crossref |u Kataoka, K. et al. Kitaev spin liquid candidate OsxCl3 comprised of honeycomb nano-domains. J. Phys. Soc. Japan 89, 114709 (2020). |t J. Phys. Soc. Japan |v 89 |y 2020 |
999 | C | 5 | |a 10.1038/srep14718 |1 VM Katukuri |9 -- missing cx lookup -- |2 Crossref |u Katukuri, V. M. et al. Strong magnetic frustration and anti-site disorder causing spin-glass behavior in honeycomb Li2RhO3. Sci. Rep. 5, 14718 (2015). |t Sci. Rep. |v 5 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevB.90.041112 |9 -- missing cx lookup -- |1 KW Plumb |p 041112 - |2 Crossref |u Plumb, K. W. et al. α-RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014). |t Phys. Rev. B |v 90 |y 2014 |
999 | C | 5 | |a 10.1038/nmat4604 |9 -- missing cx lookup -- |1 A Banerjee |p 733 - |2 Crossref |u Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016). |t Nat. Mater. |v 15 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevB.92.235119 |9 -- missing cx lookup -- |1 RD Johnson |p 235119 - |2 Crossref |u Johnson, R. D. et al. Monoclinic crystal structure of α-RuCl3 and the zigzag antiferromagnetic ground state. Phys. Rev. B 92, 235119 (2015). |t Phys. Rev. B |v 92 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevB.91.144420 |9 -- missing cx lookup -- |1 JA Sears |p 144420 - |2 Crossref |u Sears, J. A. et al. Magnetic order in α-RuCl3: A honeycomb-lattice quantum magnet with strong spin-orbit coupling. Phys. Rev. B 91, 144420 (2015). |t Phys. Rev. B |v 91 |y 2015 |
999 | C | 5 | |a 10.1088/1361-6633/ad208d |9 -- missing cx lookup -- |2 Crossref |u Rousochatzakis, I., Perkins, N., Luo, Q., Kee, H.-Y. Beyond Kitaev physics in strong spin-orbit coupled magnets. Rep. Prog. Phys. (2024). |
999 | C | 5 | |a 10.1103/PhysRevB.96.155107 |9 -- missing cx lookup -- |1 MG Yamada |p 155107 - |2 Crossref |u Yamada, M. G., Dwivedi, V. & Hermanns, M. Crystalline Kitaev spin liquids. Phys. Rev. B 96, 155107 (2017). |t Phys. Rev. B |v 96 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.119.057202 |9 -- missing cx lookup -- |1 MG Yamada |p 057202 - |2 Crossref |u Yamada, M. G., Fujita, H. & Oshikawa, M. Designing Kitaev spin liquids in metal-organic frameworks. Phys. Rev. Lett. 119, 057202 (2017). |t Phys. Rev. Lett. |v 119 |y 2017 |
999 | C | 5 | |a 10.1038/s41535-018-0079-2 |1 A Banerjee |9 -- missing cx lookup -- |2 Crossref |u Banerjee, A. et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Mater. 3, 8 (2018). |t npj Quantum Mater. |v 3 |y 2018 |
999 | C | 5 | |a 10.1006/jssc.1996.0035 |9 -- missing cx lookup -- |1 H Fukuoka |p 247 - |2 Crossref |u Fukuoka, H., Imoto, H. & Saito, T. Synthesis and crystal structure of a new ruthenium silicophosphate: RuP3SiO11. J. Solid State Chem. 121, 247–250 (1996). |t J. Solid State Chem. |v 121 |y 1996 |
999 | C | 5 | |a 10.1038/s41467-021-24722-4 |1 H Suzuki |9 -- missing cx lookup -- |2 Crossref |u Suzuki, H. et al. Proximate ferromagnetic state in the Kitaev model material α-RuCl3. Nat. Commun. 12, 4512 (2021). |t Nat. Commun. |v 12 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevLett.110.076402 |9 -- missing cx lookup -- |1 H Gretarsson |p 076402 - |2 Crossref |u Gretarsson, H. et al. Crystal-field splitting and correlation effect on the electronic structure of A2IrO3. Phys. Rev. Lett. 110, 076402 (2013). |t Phys. Rev. Lett. |v 110 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevLett.127.227201 |9 -- missing cx lookup -- |1 H Takahashi |p 227201 - |2 Crossref |u Takahashi, H. et al. Nonmagnetic J = 0 state and spin-orbit excitations in K2RuCl6. Phys. Rev. Lett. 127, 227201 (2021). |t Phys. Rev. Lett. |v 127 |y 2021 |
999 | C | 5 | |2 Crossref |u Gretarsson, H. et al. J = 1/2 Pseudospins and d-p Hybridization in the Kitaev Spin Liquid Candidates RuX3 (X = Cl, Br, I) (2024). |
999 | C | 5 | |a 10.1103/PhysRevB.103.L220408 |9 -- missing cx lookup -- |1 Y Li |p 220408 - |2 Crossref |u Li, Y., Winter, S. M., Kaib, D. A. S., Riedl, K. & Valentí, R. Modified Curie-Weiss law for jeff magnets. Phys. Rev. B 103, 220408 (2021). |t Phys. Rev. B |v 103 |y 2021 |
999 | C | 5 | |a 10.1063/5.0101512 |9 -- missing cx lookup -- |1 S Kim |p 080903 - |2 Crossref |u Kim, S., Yuan, B. & Kim, Y.-J. α-RuCl3 and other Kitaev materials. APL Mater. 10, 080903 (2022). |t APL Mater. |v 10 |y 2022 |
999 | C | 5 | |a 10.1038/s41467-019-08459-9 |1 C Hickey |9 -- missing cx lookup -- |2 Crossref |u Hickey, C. & Trebst, S. Emergence of a field-driven U(1) spin liquid in the Kitaev honeycomb model. Nat. Commun. 10, 530 (2019). |t Nat. Commun. |v 10 |y 2019 |
999 | C | 5 | |2 Crossref |u Miller, S.C., Love, W.F. Tables of Irreducible Representations of Space Groups and Co-representations of Magnetic Space Groups. Pruett Press, Colorado (1967). |
999 | C | 5 | |a 10.1088/0953-8984/1/10/007 |9 -- missing cx lookup -- |1 JD Reger |p 1855 - |2 Crossref |u Reger, J. D., Riera, J. A. & Young, A. P. Monte carlo simulations of the spin-1/2 Heisenberg antiferromagnet in two dimensions. J. Phys. Condens. Matter. 1, 1855–1865 (1989). |t J. Phys. Condens. Matter. |v 1 |y 1989 |
999 | C | 5 | |a 10.1103/PhysRevB.93.134423 |9 -- missing cx lookup -- |1 HB Cao |p 134423 - |2 Crossref |u Cao, H. B. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B 93, 134423 (2016). |t Phys. Rev. B |v 93 |y 2016 |
999 | C | 5 | |a 10.1016/j.physrep.2021.11.003 |9 -- missing cx lookup -- |1 S Trebst |p 1 - |2 Crossref |u Trebst, S. & Hickey, C. Kitaev materials. Phys. Rep. 950, 1–37 (2022). |t Phys. Rep. |v 950 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.119.037201 |9 -- missing cx lookup -- |1 S-H Baek |p 037201 - |2 Crossref |u Baek, S.-H. et al. Evidence for a field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 037201 (2017). |t Phys. Rev. Lett. |v 119 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevB.102.235155 |9 -- missing cx lookup -- |1 R Hentrich |p 235155 - |2 Crossref |u Hentrich, R. et al. High-field thermal transport properties of the Kitaev quantum magnet α-RuCl3: Evidence for low-energy excitations beyond the critical field. Phys. Rev. B 102, 235155 (2020). |t Phys. Rev. B |v 102 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevB.92.024413 |9 -- missing cx lookup -- |1 J Chaloupka |p 024413 - |2 Crossref |u Chaloupka, J. & Khaliullin, G. Hidden symmetries of the extended Kitaev-heisenberg model: Implications for the honeycomb-lattice iridates A2IrO3. Phys. Rev. B 92, 024413 (2015). |t Phys. Rev. B |v 92 |y 2015 |
999 | C | 5 | |a 10.1038/s41467-023-39940-1 |1 X Bai |9 -- missing cx lookup -- |2 Crossref |u Bai, X. et al. Instabilities of heavy magnons in an anisotropic magnet. Nat. Commun. 14, 4199 (2023). |t Nat. Commun. |v 14 |y 2023 |
999 | C | 5 | |a 10.1038/s41567-023-02180-7 |9 -- missing cx lookup -- |1 C Kim |p 1624 - |2 Crossref |u Kim, C. et al. Bond-dependent anisotropy and magnon decay in cobalt-based Kitaev triangular antiferromagnet. Nat. Phys. 19, 1624–1629 (2023). |t Nat. Phys. |v 19 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevB.28.1529 |9 -- missing cx lookup -- |1 JH Taylor |p 1529 - |2 Crossref |u Taylor, J. H. & Müller, G. Limitations of spin-wave theory in T = 0 spin dynamics. Phys. Rev. B 28, 1529–1533 (1983). |t Phys. Rev. B |v 28 |y 1983 |
999 | C | 5 | |a 10.1103/RevModPhys.85.219 |9 -- missing cx lookup -- |1 ME Zhitomirsky |p 219 - |2 Crossref |u Zhitomirsky, M. E. & Chernyshev, A. L. Colloquium: Spontaneous magnon decays. Rev. Mod. Phys. 85, 219–242 (2013). |t Rev. Mod. Phys. |v 85 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevB.100.104423 |9 -- missing cx lookup -- |1 JG Rau |p 104423 - |2 Crossref |u Rau, J. G., Moessner, R. & McClarty, P. A. Magnon interactions in the frustrated pyrochlore ferromagnet yb2ti2o7. Phys. Rev. B 100, 104423 (2019). |t Phys. Rev. B |v 100 |y 2019 |
999 | C | 5 | |a 10.1038/s41467-017-01177-0 |1 SM Winter |9 -- missing cx lookup -- |2 Crossref |u Winter, S. M. et al. Breakdown of magnons in a strongly spin-orbital coupled magnet. Nat. Commun. 8, 1152 (2017). |t Nat. Commun. |v 8 |y 2017 |
999 | C | 5 | |a 10.1073/pnas.2215509119 |9 -- missing cx lookup -- |1 T Halloran |p 2215509119 - |2 Crossref |u Halloran, T. et al. Geometrical frustration versus Kitaev interactions in BaCo2(AsO4)2. Proc. Natl. Acad. Sci. USA. 120, 2215509119 (2023). |t Proc. Natl. Acad. Sci. USA. |v 120 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevB.105.214411 |9 -- missing cx lookup -- |1 H Liu |p 214411 - |2 Crossref |u Liu, H., Chaloupka, J. & Khaliullin, G. Exchange interactions in d5 Kitaev materials: From Na2IrO3 to α-RuCl3. Phys. Rev. B 105, 214411 (2022). |t Phys. Rev. B |v 105 |y 2022 |
999 | C | 5 | |1 J Kim |y 2020 |2 Crossref |u Kim, J. et al. Dynamic spin correlations in the honeycomb lattice Na2IrO3 measured by resonant inelastic X-ray scattering. Phys. Rev. X 10, 021034 (2020). |
999 | C | 5 | |2 Crossref |u Rau, J.G., Kee, H.-Y. Trigonal distortion in the honeycomb iridates: Proximity of zigzag and spiral phases in Na2IrO3 (2014). |
999 | C | 5 | |a 10.1038/s41535-022-00481-3 |1 DAS Kaib |9 -- missing cx lookup -- |2 Crossref |u Kaib, D. A. S. et al. Electronic and magnetic properties of the RuX3 (X = Cl, Br, I) family: two siblings—and a cousin? npj Quantum Materials 7, 75 (2022). |t npj Quantum Materials |v 7 |y 2022 |
999 | C | 5 | |a 10.1016/0022-4596(95)80015-H |9 -- missing cx lookup -- |1 H Fukuoka |p 107 - |2 Crossref |u Fukuoka, H., Imoto, H. & Saito, T. New polymorphs of RuIIIP3O9: Cyclo-hexaphosphate Ru2P6O18 and metaphosphate Ru(PO3)3 with a novel structure. J. Solid State Chem. 119, 107–114 (1995). |t J. Solid State Chem. |v 119 |y 1995 |
999 | C | 5 | |a 10.1107/S0021889813003531 |9 -- missing cx lookup -- |1 BH Toby |p 544 - |2 Crossref |u Toby, B. H. & Von Dreele, R. B. GSAS-II: The Genesis of a Modern Open-source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 46, 544–549 (2013). |t J. Appl. Crystallogr. |v 46 |y 2013 |
999 | C | 5 | |a 10.1146/annurev-matsci-070214-021008 |9 -- missing cx lookup -- |1 JM Perez-Mato |p 217 - |2 Crossref |u Perez-Mato, J. M. et al. Symmetry-based computational tools for magnetic crystallography. Annu. Rev. Mater. Res. 45, 217–248 (2015). |t Annu. Rev. Mater. Res. |v 45 |y 2015 |
999 | C | 5 | |a 10.1016/0921-4526(93)90108-I |9 -- missing cx lookup -- |1 J Rodríguez-Carvajal |p 55 - |2 Crossref |u Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens. Matter. 192, 55–69 (1993). |t Phys. B: Condens. Matter. |v 192 |y 1993 |
999 | C | 5 | |a 10.1107/S0365110X6500018X |9 -- missing cx lookup -- |1 DT Cromer |p 104 - |2 Crossref |u Cromer, D. T. & Waber, J. T. Scattering factors computed from relativistic Dirac–Slater wave functions. Acta Crystallogr. 18, 104–109 (1965). |t Acta Crystallogr. |v 18 |y 1965 |
999 | C | 5 | |a 10.1088/1742-6596/712/1/012001 |9 -- missing cx lookup -- |1 MW Haverkort |p 012001 - |2 Crossref |u Haverkort, M. W. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain. J. Phys. Conf. Ser. 712, 012001 (2016). |t J. Phys. Conf. Ser. |v 712 |y 2016 |
999 | C | 5 | |1 Z Yang |y 2023 |2 Crossref |u Yang, Z. et al. Resonant inelastic x-ray scattering from electronic excitations in α-RuCl3 nanolayers. Phys. Rev. B 108, 041406 (2023). |
999 | C | 5 | |a 10.1103/PhysRevB.93.214431 |9 -- missing cx lookup -- |1 SM Winter |p 214431 - |2 Crossref |u Winter, S. M., Li, Y., Jeschke, H. O. & Valentí, R. Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales. Phys. Rev. B 93, 214431 (2016). |t Phys. Rev. B |v 93 |y 2016 |
999 | C | 5 | |a 10.1088/0953-8984/27/16/166002 |9 -- missing cx lookup -- |1 S Toth |p 166002 - |2 Crossref |u Toth, S. & Lake, B. Linear spin wave theory for single-Q incommensurate magnetic structures. J. Phys. Condens. Matter. 27, 166002 (2015). |t J. Phys. Condens. Matter. |v 27 |y 2015 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|