001     617380
005     20250715171009.0
024 7 _ |a 10.1038/s41467-024-53900-3
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-06741
|2 datacite_doi
024 7 _ |a altmetric:161245269
|2 altmetric
024 7 _ |a pmid:39548058
|2 pmid
024 7 _ |a WOS:001356232600011
|2 WOS
024 7 _ |2 openalex
|a openalex:W4404391607
037 _ _ |a PUBDB-2024-06741
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Abdeldaim, Aly
|0 P:(DE-H253)PIP1100255
|b 0
|e Corresponding author
245 _ _ |a Kitaev interactions through extended superexchange pathways in the ${j}_{{\mathsf{eff}}}=1/2$ Ru$^{3+}$ honeycomb magnet RuP$_3$SiO$_{11}$
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738142529_3341516
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru$^{3+}$ octahedra within the honeycomb layers of the inorganic framework solid, RuP$_3$SiO$_{11}$. We confirm the requisite ${j}_{{\mathsf{eff}}}=1/2$ state of Ru$^{3+}$ in RuP$_3$SiO$_{11}$ and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a DFG project G:(GEPRIS)492547816 - TRR 360: Eingeschränkte Quantenmaterie (492547816)
|0 G:(GEPRIS)492547816
|c 492547816
|x 2
542 _ _ |i 2024-11-15
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-11-15
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P01
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P01-20150101
|6 EXP:(DE-H253)P-P01-20150101
|x 0
700 1 _ |a Gretarsson, Hlynur
|0 P:(DE-H253)PIP1029079
|b 1
700 1 _ |a Day, Sarah J.
|b 2
700 1 _ |a Le, M. Duc
|0 P:(DE-H253)PIP1103648
|b 3
700 1 _ |a Stenning, Gavin B. G.
|b 4
700 1 _ |a Manuel, Pascal
|0 P:(DE-H253)PIP1023920
|b 5
700 1 _ |a Perry, Robin S.
|0 0000-0002-1825-2201
|b 6
700 1 _ |a Tsirlin, Alexander A.
|0 P:(DE-H253)PIP1014467
|b 7
700 1 _ |a Nilsen, Gøran J.
|0 0000-0002-0148-0486
|b 8
|e Corresponding author
700 1 _ |a Clark, Lucy
|0 P:(DE-H253)PIP1100396
|b 9
|e Corresponding author
773 1 8 |a 10.1038/s41467-024-53900-3
|b Springer Science and Business Media LLC
|d 2024-11-15
|n 1
|p 9778
|3 journal-article
|2 Crossref
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
773 _ _ |a 10.1038/s41467-024-53900-3
|g Vol. 15, no. 1, p. 9778
|0 PERI:(DE-600)2553671-0
|n 1
|p 9778
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/617380/files/s41467-024-53900-3.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/617380/files/s41467-024-53900-3.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:617380
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1100255
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1029079
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 3
|6 P:(DE-H253)PIP1103648
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1103648
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1023920
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1014467
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1100396
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 1 _ |a FullTexts
999 C 5 |a 10.1103/PhysRevLett.50.1153
|9 -- missing cx lookup --
|1 FDM Haldane
|p 1153 -
|2 Crossref
|u Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983).
|t Phys. Rev. Lett.
|v 50
|y 1983
999 C 5 |a 10.1088/0022-3719/6/7/010
|9 -- missing cx lookup --
|1 JM Kosterlitz
|p 1181 -
|2 Crossref
|u Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).
|t J. Phys. C
|v 6
|y 1973
999 C 5 |a 10.1038/s41586-021-04105-x
|9 -- missing cx lookup --
|1 BA Bernevig
|p 41 -
|2 Crossref
|u Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).
|t Nature
|v 603
|y 2022
999 C 5 |a 10.1038/nphys3826
|9 -- missing cx lookup --
|1 C Balz
|p 942 -
|2 Crossref
|u Balz, C. et al. Physical realization of a quantum spin liquid based on a complex frustration mechanism. Nat. Phys. 12, 942–949 (2016).
|t Nat. Phys.
|v 12
|y 2016
999 C 5 |a 10.1126/science.aay0668
|9 -- missing cx lookup --
|1 C Broholm
|p 0668 -
|2 Crossref
|u Broholm, C. et al. Quantum spin liquids. Science 367, 0668 (2020).
|t Science
|v 367
|y 2020
999 C 5 |a 10.1146/annurev-matsci-080819-011453
|9 -- missing cx lookup --
|1 L Clark
|p 495 -
|2 Crossref
|u Clark, L. & Abdeldaim, A. H. Quantum spin liquids from a materials perspective. Annu. Rev. Mater. Sci. 51, 495–519 (2021).
|t Annu. Rev. Mater. Sci.
|v 51
|y 2021
999 C 5 |a 10.1088/0034-4885/80/1/016502
|9 -- missing cx lookup --
|1 L Savary
|p 016502 -
|2 Crossref
|u Savary, L. & Balents, L. Quantum spin liquids: A review. Rep. Prog. Phys. 80, 016502 (2016).
|t Rep. Prog. Phys.
|v 80
|y 2016
999 C 5 |a 10.1146/annurev-conmatphys-033117-053934
|9 -- missing cx lookup --
|1 M Hermanns
|p 17 -
|2 Crossref
|u Hermanns, M., Kimchi, I. & Knolle, J. Physics of the Kitaev model: Fractionalization, dynamic correlations, and material connections. Annu. Rev. Condens. Matter Phys. 9, 17–33 (2018).
|t Annu. Rev. Condens. Matter Phys.
|v 9
|y 2018
999 C 5 |a 10.1103/PhysRevLett.98.117205
|9 -- missing cx lookup --
|1 Y Ran
|p 117205 -
|2 Crossref
|u Ran, Y., Hermele, M., Lee, P. A. & Wen, X.-G. Projected-wave-function study of the spin-1/2 Heisenberg model on the kagomé lattice. Phys. Rev. Lett. 98, 117205 (2007).
|t Phys. Rev. Lett.
|v 98
|y 2007
999 C 5 |a 10.1126/science.1201080
|9 -- missing cx lookup --
|1 S Yan
|p 1173 -
|2 Crossref
|u Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).
|t Science
|v 332
|y 2011
999 C 5 |a 10.1103/RevModPhys.88.041002
|9 -- missing cx lookup --
|1 MR Norman
|p 041002 -
|2 Crossref
|u Norman, M. R. Colloquium: Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).
|t Rev. Mod. Phys.
|v 88
|y 2016
999 C 5 |a 10.1038/nature11659
|9 -- missing cx lookup --
|1 T-H Han
|p 406 -
|2 Crossref
|u Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).
|t Nature
|v 492
|y 2012
999 C 5 |a 10.1126/science.aab2120
|9 -- missing cx lookup --
|1 M Fu
|p 655 -
|2 Crossref
|u Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet. Science 350, 655–658 (2015).
|t Science
|v 350
|y 2015
999 C 5 |a 10.1038/s41567-020-0792-1
|9 -- missing cx lookup --
|1 P Khuntia
|p 469 -
|2 Crossref
|u Khuntia, P. et al. Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2. Nat. Phys. 16, 469–474 (2020).
|t Nat. Phys.
|v 16
|y 2020
999 C 5 |a 10.1016/j.aop.2005.10.005
|9 -- missing cx lookup --
|1 A Kitaev
|p 2 -
|2 Crossref
|u Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
|t Ann. Phys.
|v 321
|y 2006
999 C 5 |a 10.1088/1361-648X/aa8cf5
|9 -- missing cx lookup --
|1 SM Winter
|p 493002 -
|2 Crossref
|u Winter, S. M. et al. Models and materials for generalized Kitaev magnetism. J. Phys. Condens. Matter. 29, 493002 (2017).
|t J. Phys. Condens. Matter.
|v 29
|y 2017
999 C 5 |a 10.1103/PhysRevResearch.2.033011
|9 -- missing cx lookup --
|1 PA Maksimov
|p 033011 -
|2 Crossref
|u Maksimov, P. A. & Chernyshev, A. L. Rethinking α-RuCl3. Phys. Rev. Res. 2, 033011 (2020).
|t Phys. Rev. Res.
|v 2
|y 2020
999 C 5 |a 10.1103/PhysRevLett.102.017205
|9 -- missing cx lookup --
|1 G Jackeli
|p 017205 -
|2 Crossref
|u Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).
|t Phys. Rev. Lett.
|v 102
|y 2009
999 C 5 |a 10.1103/PhysRevLett.123.037203
|9 -- missing cx lookup --
|1 PP Stavropoulos
|p 037203 -
|2 Crossref
|u Stavropoulos, P. P., Pereira, D. & Kee, H.-Y. Microscopic mechanism for a higher-spin Kitaev model. Phys. Rev. Lett. 123, 037203 (2019).
|t Phys. Rev. Lett.
|v 123
|y 2019
999 C 5 |a 10.1103/PhysRevB.97.014407
|9 -- missing cx lookup --
|1 H Liu
|p 014407 -
|2 Crossref
|u Liu, H. & Khaliullin, G. Pseudospin exchange interactions in d7 cobalt compounds: Possible realization of the Kitaev model. Phys. Rev. B 97, 014407 (2018).
|t Phys. Rev. B
|v 97
|y 2018
999 C 5 |a 10.1088/1361-648X/ab8525
|9 -- missing cx lookup --
|1 Y Motome
|p 404001 -
|2 Crossref
|u Motome, Y., Sano, R., Jang, S., Sugita, Y. & Kato, Y. Materials design of Kitaev spin liquids beyond the Jackeli–Khaliullin mechanism. J. Phys. Condens. Matter. 32, 404001 (2020).
|t J. Phys. Condens. Matter.
|v 32
|y 2020
999 C 5 |a 10.1038/s42254-019-0038-2
|9 -- missing cx lookup --
|1 H Takagi
|p 264 -
|2 Crossref
|u Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).
|t Nat. Rev. Phys.
|v 1
|y 2019
999 C 5 |a 10.7566/JPSJ.89.114709
|9 -- missing cx lookup --
|1 K Kataoka
|p 114709 -
|2 Crossref
|u Kataoka, K. et al. Kitaev spin liquid candidate OsxCl3 comprised of honeycomb nano-domains. J. Phys. Soc. Japan 89, 114709 (2020).
|t J. Phys. Soc. Japan
|v 89
|y 2020
999 C 5 |a 10.1038/srep14718
|1 VM Katukuri
|9 -- missing cx lookup --
|2 Crossref
|u Katukuri, V. M. et al. Strong magnetic frustration and anti-site disorder causing spin-glass behavior in honeycomb Li2RhO3. Sci. Rep. 5, 14718 (2015).
|t Sci. Rep.
|v 5
|y 2015
999 C 5 |a 10.1103/PhysRevB.90.041112
|9 -- missing cx lookup --
|1 KW Plumb
|p 041112 -
|2 Crossref
|u Plumb, K. W. et al. α-RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).
|t Phys. Rev. B
|v 90
|y 2014
999 C 5 |a 10.1038/nmat4604
|9 -- missing cx lookup --
|1 A Banerjee
|p 733 -
|2 Crossref
|u Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).
|t Nat. Mater.
|v 15
|y 2016
999 C 5 |a 10.1103/PhysRevB.92.235119
|9 -- missing cx lookup --
|1 RD Johnson
|p 235119 -
|2 Crossref
|u Johnson, R. D. et al. Monoclinic crystal structure of α-RuCl3 and the zigzag antiferromagnetic ground state. Phys. Rev. B 92, 235119 (2015).
|t Phys. Rev. B
|v 92
|y 2015
999 C 5 |a 10.1103/PhysRevB.91.144420
|9 -- missing cx lookup --
|1 JA Sears
|p 144420 -
|2 Crossref
|u Sears, J. A. et al. Magnetic order in α-RuCl3: A honeycomb-lattice quantum magnet with strong spin-orbit coupling. Phys. Rev. B 91, 144420 (2015).
|t Phys. Rev. B
|v 91
|y 2015
999 C 5 |a 10.1088/1361-6633/ad208d
|9 -- missing cx lookup --
|2 Crossref
|u Rousochatzakis, I., Perkins, N., Luo, Q., Kee, H.-Y. Beyond Kitaev physics in strong spin-orbit coupled magnets. Rep. Prog. Phys. (2024).
999 C 5 |a 10.1103/PhysRevB.96.155107
|9 -- missing cx lookup --
|1 MG Yamada
|p 155107 -
|2 Crossref
|u Yamada, M. G., Dwivedi, V. & Hermanns, M. Crystalline Kitaev spin liquids. Phys. Rev. B 96, 155107 (2017).
|t Phys. Rev. B
|v 96
|y 2017
999 C 5 |a 10.1103/PhysRevLett.119.057202
|9 -- missing cx lookup --
|1 MG Yamada
|p 057202 -
|2 Crossref
|u Yamada, M. G., Fujita, H. & Oshikawa, M. Designing Kitaev spin liquids in metal-organic frameworks. Phys. Rev. Lett. 119, 057202 (2017).
|t Phys. Rev. Lett.
|v 119
|y 2017
999 C 5 |a 10.1038/s41535-018-0079-2
|1 A Banerjee
|9 -- missing cx lookup --
|2 Crossref
|u Banerjee, A. et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Mater. 3, 8 (2018).
|t npj Quantum Mater.
|v 3
|y 2018
999 C 5 |a 10.1006/jssc.1996.0035
|9 -- missing cx lookup --
|1 H Fukuoka
|p 247 -
|2 Crossref
|u Fukuoka, H., Imoto, H. & Saito, T. Synthesis and crystal structure of a new ruthenium silicophosphate: RuP3SiO11. J. Solid State Chem. 121, 247–250 (1996).
|t J. Solid State Chem.
|v 121
|y 1996
999 C 5 |a 10.1038/s41467-021-24722-4
|1 H Suzuki
|9 -- missing cx lookup --
|2 Crossref
|u Suzuki, H. et al. Proximate ferromagnetic state in the Kitaev model material α-RuCl3. Nat. Commun. 12, 4512 (2021).
|t Nat. Commun.
|v 12
|y 2021
999 C 5 |a 10.1103/PhysRevLett.110.076402
|9 -- missing cx lookup --
|1 H Gretarsson
|p 076402 -
|2 Crossref
|u Gretarsson, H. et al. Crystal-field splitting and correlation effect on the electronic structure of A2IrO3. Phys. Rev. Lett. 110, 076402 (2013).
|t Phys. Rev. Lett.
|v 110
|y 2013
999 C 5 |a 10.1103/PhysRevLett.127.227201
|9 -- missing cx lookup --
|1 H Takahashi
|p 227201 -
|2 Crossref
|u Takahashi, H. et al. Nonmagnetic J = 0 state and spin-orbit excitations in K2RuCl6. Phys. Rev. Lett. 127, 227201 (2021).
|t Phys. Rev. Lett.
|v 127
|y 2021
999 C 5 |2 Crossref
|u Gretarsson, H. et al. J = 1/2 Pseudospins and d-p Hybridization in the Kitaev Spin Liquid Candidates RuX3 (X = Cl, Br, I) (2024).
999 C 5 |a 10.1103/PhysRevB.103.L220408
|9 -- missing cx lookup --
|1 Y Li
|p 220408 -
|2 Crossref
|u Li, Y., Winter, S. M., Kaib, D. A. S., Riedl, K. & Valentí, R. Modified Curie-Weiss law for jeff magnets. Phys. Rev. B 103, 220408 (2021).
|t Phys. Rev. B
|v 103
|y 2021
999 C 5 |a 10.1063/5.0101512
|9 -- missing cx lookup --
|1 S Kim
|p 080903 -
|2 Crossref
|u Kim, S., Yuan, B. & Kim, Y.-J. α-RuCl3 and other Kitaev materials. APL Mater. 10, 080903 (2022).
|t APL Mater.
|v 10
|y 2022
999 C 5 |a 10.1038/s41467-019-08459-9
|1 C Hickey
|9 -- missing cx lookup --
|2 Crossref
|u Hickey, C. & Trebst, S. Emergence of a field-driven U(1) spin liquid in the Kitaev honeycomb model. Nat. Commun. 10, 530 (2019).
|t Nat. Commun.
|v 10
|y 2019
999 C 5 |2 Crossref
|u Miller, S.C., Love, W.F. Tables of Irreducible Representations of Space Groups and Co-representations of Magnetic Space Groups. Pruett Press, Colorado (1967).
999 C 5 |a 10.1088/0953-8984/1/10/007
|9 -- missing cx lookup --
|1 JD Reger
|p 1855 -
|2 Crossref
|u Reger, J. D., Riera, J. A. & Young, A. P. Monte carlo simulations of the spin-1/2 Heisenberg antiferromagnet in two dimensions. J. Phys. Condens. Matter. 1, 1855–1865 (1989).
|t J. Phys. Condens. Matter.
|v 1
|y 1989
999 C 5 |a 10.1103/PhysRevB.93.134423
|9 -- missing cx lookup --
|1 HB Cao
|p 134423 -
|2 Crossref
|u Cao, H. B. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B 93, 134423 (2016).
|t Phys. Rev. B
|v 93
|y 2016
999 C 5 |a 10.1016/j.physrep.2021.11.003
|9 -- missing cx lookup --
|1 S Trebst
|p 1 -
|2 Crossref
|u Trebst, S. & Hickey, C. Kitaev materials. Phys. Rep. 950, 1–37 (2022).
|t Phys. Rep.
|v 950
|y 2022
999 C 5 |a 10.1103/PhysRevLett.119.037201
|9 -- missing cx lookup --
|1 S-H Baek
|p 037201 -
|2 Crossref
|u Baek, S.-H. et al. Evidence for a field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 037201 (2017).
|t Phys. Rev. Lett.
|v 119
|y 2017
999 C 5 |a 10.1103/PhysRevB.102.235155
|9 -- missing cx lookup --
|1 R Hentrich
|p 235155 -
|2 Crossref
|u Hentrich, R. et al. High-field thermal transport properties of the Kitaev quantum magnet α-RuCl3: Evidence for low-energy excitations beyond the critical field. Phys. Rev. B 102, 235155 (2020).
|t Phys. Rev. B
|v 102
|y 2020
999 C 5 |a 10.1103/PhysRevB.92.024413
|9 -- missing cx lookup --
|1 J Chaloupka
|p 024413 -
|2 Crossref
|u Chaloupka, J. & Khaliullin, G. Hidden symmetries of the extended Kitaev-heisenberg model: Implications for the honeycomb-lattice iridates A2IrO3. Phys. Rev. B 92, 024413 (2015).
|t Phys. Rev. B
|v 92
|y 2015
999 C 5 |a 10.1038/s41467-023-39940-1
|1 X Bai
|9 -- missing cx lookup --
|2 Crossref
|u Bai, X. et al. Instabilities of heavy magnons in an anisotropic magnet. Nat. Commun. 14, 4199 (2023).
|t Nat. Commun.
|v 14
|y 2023
999 C 5 |a 10.1038/s41567-023-02180-7
|9 -- missing cx lookup --
|1 C Kim
|p 1624 -
|2 Crossref
|u Kim, C. et al. Bond-dependent anisotropy and magnon decay in cobalt-based Kitaev triangular antiferromagnet. Nat. Phys. 19, 1624–1629 (2023).
|t Nat. Phys.
|v 19
|y 2023
999 C 5 |a 10.1103/PhysRevB.28.1529
|9 -- missing cx lookup --
|1 JH Taylor
|p 1529 -
|2 Crossref
|u Taylor, J. H. & Müller, G. Limitations of spin-wave theory in T = 0 spin dynamics. Phys. Rev. B 28, 1529–1533 (1983).
|t Phys. Rev. B
|v 28
|y 1983
999 C 5 |a 10.1103/RevModPhys.85.219
|9 -- missing cx lookup --
|1 ME Zhitomirsky
|p 219 -
|2 Crossref
|u Zhitomirsky, M. E. & Chernyshev, A. L. Colloquium: Spontaneous magnon decays. Rev. Mod. Phys. 85, 219–242 (2013).
|t Rev. Mod. Phys.
|v 85
|y 2013
999 C 5 |a 10.1103/PhysRevB.100.104423
|9 -- missing cx lookup --
|1 JG Rau
|p 104423 -
|2 Crossref
|u Rau, J. G., Moessner, R. & McClarty, P. A. Magnon interactions in the frustrated pyrochlore ferromagnet yb2ti2o7. Phys. Rev. B 100, 104423 (2019).
|t Phys. Rev. B
|v 100
|y 2019
999 C 5 |a 10.1038/s41467-017-01177-0
|1 SM Winter
|9 -- missing cx lookup --
|2 Crossref
|u Winter, S. M. et al. Breakdown of magnons in a strongly spin-orbital coupled magnet. Nat. Commun. 8, 1152 (2017).
|t Nat. Commun.
|v 8
|y 2017
999 C 5 |a 10.1073/pnas.2215509119
|9 -- missing cx lookup --
|1 T Halloran
|p 2215509119 -
|2 Crossref
|u Halloran, T. et al. Geometrical frustration versus Kitaev interactions in BaCo2(AsO4)2. Proc. Natl. Acad. Sci. USA. 120, 2215509119 (2023).
|t Proc. Natl. Acad. Sci. USA.
|v 120
|y 2023
999 C 5 |a 10.1103/PhysRevB.105.214411
|9 -- missing cx lookup --
|1 H Liu
|p 214411 -
|2 Crossref
|u Liu, H., Chaloupka, J. & Khaliullin, G. Exchange interactions in d5 Kitaev materials: From Na2IrO3 to α-RuCl3. Phys. Rev. B 105, 214411 (2022).
|t Phys. Rev. B
|v 105
|y 2022
999 C 5 |1 J Kim
|y 2020
|2 Crossref
|u Kim, J. et al. Dynamic spin correlations in the honeycomb lattice Na2IrO3 measured by resonant inelastic X-ray scattering. Phys. Rev. X 10, 021034 (2020).
999 C 5 |2 Crossref
|u Rau, J.G., Kee, H.-Y. Trigonal distortion in the honeycomb iridates: Proximity of zigzag and spiral phases in Na2IrO3 (2014).
999 C 5 |a 10.1038/s41535-022-00481-3
|1 DAS Kaib
|9 -- missing cx lookup --
|2 Crossref
|u Kaib, D. A. S. et al. Electronic and magnetic properties of the RuX3 (X = Cl, Br, I) family: two siblings—and a cousin? npj Quantum Materials 7, 75 (2022).
|t npj Quantum Materials
|v 7
|y 2022
999 C 5 |a 10.1016/0022-4596(95)80015-H
|9 -- missing cx lookup --
|1 H Fukuoka
|p 107 -
|2 Crossref
|u Fukuoka, H., Imoto, H. & Saito, T. New polymorphs of RuIIIP3O9: Cyclo-hexaphosphate Ru2P6O18 and metaphosphate Ru(PO3)3 with a novel structure. J. Solid State Chem. 119, 107–114 (1995).
|t J. Solid State Chem.
|v 119
|y 1995
999 C 5 |a 10.1107/S0021889813003531
|9 -- missing cx lookup --
|1 BH Toby
|p 544 -
|2 Crossref
|u Toby, B. H. & Von Dreele, R. B. GSAS-II: The Genesis of a Modern Open-source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 46, 544–549 (2013).
|t J. Appl. Crystallogr.
|v 46
|y 2013
999 C 5 |a 10.1146/annurev-matsci-070214-021008
|9 -- missing cx lookup --
|1 JM Perez-Mato
|p 217 -
|2 Crossref
|u Perez-Mato, J. M. et al. Symmetry-based computational tools for magnetic crystallography. Annu. Rev. Mater. Res. 45, 217–248 (2015).
|t Annu. Rev. Mater. Res.
|v 45
|y 2015
999 C 5 |a 10.1016/0921-4526(93)90108-I
|9 -- missing cx lookup --
|1 J Rodríguez-Carvajal
|p 55 -
|2 Crossref
|u Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens. Matter. 192, 55–69 (1993).
|t Phys. B: Condens. Matter.
|v 192
|y 1993
999 C 5 |a 10.1107/S0365110X6500018X
|9 -- missing cx lookup --
|1 DT Cromer
|p 104 -
|2 Crossref
|u Cromer, D. T. & Waber, J. T. Scattering factors computed from relativistic Dirac–Slater wave functions. Acta Crystallogr. 18, 104–109 (1965).
|t Acta Crystallogr.
|v 18
|y 1965
999 C 5 |a 10.1088/1742-6596/712/1/012001
|9 -- missing cx lookup --
|1 MW Haverkort
|p 012001 -
|2 Crossref
|u Haverkort, M. W. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain. J. Phys. Conf. Ser. 712, 012001 (2016).
|t J. Phys. Conf. Ser.
|v 712
|y 2016
999 C 5 |1 Z Yang
|y 2023
|2 Crossref
|u Yang, Z. et al. Resonant inelastic x-ray scattering from electronic excitations in α-RuCl3 nanolayers. Phys. Rev. B 108, 041406 (2023).
999 C 5 |a 10.1103/PhysRevB.93.214431
|9 -- missing cx lookup --
|1 SM Winter
|p 214431 -
|2 Crossref
|u Winter, S. M., Li, Y., Jeschke, H. O. & Valentí, R. Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales. Phys. Rev. B 93, 214431 (2016).
|t Phys. Rev. B
|v 93
|y 2016
999 C 5 |a 10.1088/0953-8984/27/16/166002
|9 -- missing cx lookup --
|1 S Toth
|p 166002 -
|2 Crossref
|u Toth, S. & Lake, B. Linear spin wave theory for single-Q incommensurate magnetic structures. J. Phys. Condens. Matter. 27, 166002 (2015).
|t J. Phys. Condens. Matter.
|v 27
|y 2015


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21