001     617354
005     20250715171508.0
024 7 _ |a 10.1039/D4NR03804E
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-06720
|2 datacite_doi
024 7 _ |a altmetric:171357703
|2 altmetric
024 7 _ |a pmid:39485379
|2 pmid
024 7 _ |a WOS:001345819900001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4403849638
037 _ _ |a PUBDB-2024-06720
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Funk, Julia
|0 P:(DE-H253)PIP1108994
|b 0
|e Corresponding author
245 _ _ |a Insights into the formation of CdSe nanoplatelets using a flow reactor
260 _ _ |a Cambridge
|c 2024
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734687348_2354975
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years, the anisotropic semiconductor nanoplatelets (NPLs) gained interest due to their unique optical properties, which depend primarily on their thickness. However, the formation mechanism behind the zinc blende CdSe NPLs remains unclear. Several theories were presented and discussed, but a concrete mechanism has not yet been found with evidence. Here, we want to present a synthesis of CdSe NPLs in a flow reactor with a liquid precursor, enabling in situ absorbance measurements. The flow reactor allows for more control in obtaining early-stage synthesis samples, which were ex situ examined with optical spectroscopy, transmission electron microscopy, as well as small-angle and powder X-ray diffraction. Our results show that CdSe magic size clusters (MSCs) formed prior to the formation of CdSe NPLs, indicating that these CdSe MSCs are necessary for the initial CdSe NPLs growth.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a GRK 2536 - GRK 2536: Hybridstrukturen auf der Nanometerskala: Chemische Konzepte zur Herstellung heterogener Nanostrukturen mit anisotropen Materialeigenschaften (NANOHYBRID) (408076438)
|0 G:(GEPRIS)408076438
|c 408076438
|x 2
536 _ _ |a LINCHPIN - A platform to LINk between CHemistry and PhysIcs of colloidal Nanomaterials (818941)
|0 G:(EU-Grant)818941
|c 818941
|f ERC-2018-COG
|x 3
536 _ _ |a SINE2020 - World class Science and Innovation with Neutrons in Europe 2020 – SINE2020 (654000)
|0 G:(EU-Grant)654000
|c 654000
|f H2020-INFRADEV-1-2014-1
|x 4
542 _ _ |i 2024-10-29
|2 Crossref
|u http://creativecommons.org/licenses/by/3.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 0
700 1 _ |a Sochor, Benedikt
|0 P:(DE-H253)PIP1096609
|b 1
|u desy
700 1 _ |a Koyiloth Vayalil, Sarathlal
|0 P:(DE-H253)PIP1015063
|b 2
|u desy
700 1 _ |a Weller, Horst
|0 P:(DE-H253)PIP1083770
|b 3
773 1 8 |a 10.1039/d4nr03804e
|b Royal Society of Chemistry (RSC)
|d 2024-01-01
|n 46
|p 21309-21316
|3 journal-article
|2 Crossref
|t Nanoscale
|v 16
|y 2024
|x 2040-3364
773 _ _ |a 10.1039/D4NR03804E
|g p. 10.1039.D4NR03804E
|0 PERI:(DE-600)2515664-0
|n 46
|p 21309-21316
|t Nanoscale
|v 16
|y 2024
|x 2040-3364
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/617354/files/Supporting%20information.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/617354/files/d4nr03804e.pdf
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/617354/files/Supporting%20information.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/617354/files/d4nr03804e.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:617354
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1108994
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1096609
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1096609
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1015063
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1015063
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1083770
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2022
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2022
|d 2024-12-10
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 1 _ |a FullTexts
999 C 5 |a 10.1021/ja401737z
|9 -- missing cx lookup --
|1 Prudnikau
|p 14476 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 135
|y 2013
999 C 5 |a 10.1021/acs.nanolett.7b03191
|9 -- missing cx lookup --
|1 Ott
|p 6870 -
|2 Crossref
|t Nano Lett.
|v 17
|y 2017
999 C 5 |a 10.1021/cm303786a
|9 -- missing cx lookup --
|1 Bouet
|p 1262 -
|2 Crossref
|t Chem. Mater.
|v 25
|y 2013
999 C 5 |a 10.1021/acs.accounts.0c00859
|9 -- missing cx lookup --
|1 Pun
|p 1545 -
|2 Crossref
|t Acc. Chem. Res.
|v 54
|y 2021
999 C 5 |a 10.1021/acs.nanolett.8b02361
|9 -- missing cx lookup --
|1 Christodoulou
|p 6248 -
|2 Crossref
|t Nano Lett.
|v 18
|y 2018
999 C 5 |a 10.1038/nmat4889
|9 -- missing cx lookup --
|1 Riedinger
|p 743 -
|2 Crossref
|t Nat. Mater.
|v 16
|y 2017
999 C 5 |a 10.1021/ja308088d
|9 -- missing cx lookup --
|1 Ithurria
|p 18585 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 134
|y 2012
999 C 5 |a 10.1039/C7CC04503D
|9 -- missing cx lookup --
|1 Rossinelli
|p 9938 -
|2 Crossref
|t Chem. Commun.
|v 53
|y 2017
999 C 5 |a 10.1039/D0NA00619J
|9 -- missing cx lookup --
|1 Schlosser
|p 4604 -
|2 Crossref
|t Nanoscale Adv.
|v 2
|y 2020
999 C 5 |a 10.1021/nl500775p
|9 -- missing cx lookup --
|1 She
|p 2772 -
|2 Crossref
|t Nano Lett.
|v 14
|y 2014
999 C 5 |a 10.1021/jacs.7b04855
|9 -- missing cx lookup --
|1 Chen
|p 10009 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 139
|y 2017
999 C 5 |a 10.48550/arXiv.1605.06553
|1 Riedinger
|y 2016
|2 Crossref
|u A.Riedinger , F. D.Ott , A.Mule , S.Mazzotti , P. N.Knuesel , S. J. P.Kress , F.Prins , S. C.Erwin and D. J.Norris How semiconductor nanoplatelets form , arXiv , 2016 , preprint, arXiv: 1605.06553 [cond-mat.mtrl-sci], 10.48550/arXiv.1605.06553
|9 -- missing cx lookup --
999 C 5 |a 10.1126/science.1188035
|9 -- missing cx lookup --
|1 Schliehe
|p 550 -
|2 Crossref
|t Science
|v 329
|y 2010
999 C 5 |a 10.1021/ar500286j
|9 -- missing cx lookup --
|1 Wang
|p 13 -
|2 Crossref
|t Acc. Chem. Res.
|v 48
|y 2015
999 C 5 |a 10.1039/D0NR05879C
|9 -- missing cx lookup --
|1 Palencia
|p 22928 -
|2 Crossref
|t Nanoscale
|v 12
|y 2020
999 C 5 |1 Hone
|y 2021
|2 Crossref
|o Hone 2021
999 C 5 |a 10.1021/ja807724e
|9 -- missing cx lookup --
|1 Ithurria
|p 16504 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 130
|y 2008
999 C 5 |a 10.1134/S1063776116030183
|9 -- missing cx lookup --
|1 Rodina
|p 554 -
|2 Crossref
|t J. Exp. Theor. Phys.
|v 122
|y 2016
999 C 5 |a 10.1021/acs.jpcc.5b06208
|9 -- missing cx lookup --
|1 Achtstein
|p 20156 -
|2 Crossref
|t J. Phys. Chem. C
|v 119
|y 2015
999 C 5 |a 10.1021/jz2013769
|9 -- missing cx lookup --
|1 Cossairt
|p 3075 -
|2 Crossref
|t J. Phys. Chem. Lett.
|v 2
|y 2011
999 C 5 |a 10.1021/cm303318f
|9 -- missing cx lookup --
|1 Harrell
|p 1199 -
|2 Crossref
|t Chem. Mater.
|v 25
|y 2013
999 C 5 |a 10.1002/adma.200601015
|9 -- missing cx lookup --
|1 Kudera
|p 548 -
|2 Crossref
|t Adv. Mater.
|v 19
|y 2007
999 C 5 |a 10.1021/acsmaterialsau.1c00075
|9 -- missing cx lookup --
|1 Busatto
|p 237 -
|2 Crossref
|t ACS Mater. Au
|v 2
|y 2022
999 C 5 |a 10.1002/smll.202002067
|9 -- missing cx lookup --
|1 Bootharaju
|p e2002067 -
|2 Crossref
|t Small
|v 17
|y 2021
999 C 5 |a 10.1021/acs.inorgchem.7b00291
|9 -- missing cx lookup --
|1 Friedfeld
|p 8689 -
|2 Crossref
|t Inorg. Chem.
|v 56
|y 2017
999 C 5 |a 10.1021/acsnano.0c00040
|9 -- missing cx lookup --
|1 Palencia
|p 1227 -
|2 Crossref
|t ACS Nano
|v 14
|y 2020
999 C 5 |a 10.1021/acs.nanolett.5b00940
|9 -- missing cx lookup --
|1 Chen
|p 4477 -
|2 Crossref
|t Nano Lett.
|v 15
|y 2015
999 C 5 |a 10.1002/adfm.201901028
|9 -- missing cx lookup --
|1 Delikanli
|p 1901028 -
|2 Crossref
|t Adv. Funct. Mater.
|v 29
|y 2019
999 C 5 |a 10.1021/jp909310a
|9 -- missing cx lookup --
|1 Yu
|p 3329 -
|2 Crossref
|t J. Phys. Chem. C
|v 114
|y 2010
999 C 5 |a 10.1021/cm034081k
|9 -- missing cx lookup --
|1 Yu
|p 2854 -
|2 Crossref
|t Chem. Mater.
|v 15
|y 2003
999 C 5 |a 10.1021/acs.nanolett.9b02687
|9 -- missing cx lookup --
|1 Castro
|p 6466 -
|2 Crossref
|t Nano Lett.
|v 19
|y 2019
999 C 5 |a 10.1039/D0MA00921K
|9 -- missing cx lookup --
|1 Singh
|p 1204 -
|2 Crossref
|t Mater. Adv.
|v 2
|y 2021
999 C 5 |a 10.1021/jacs.7b12175
|9 -- missing cx lookup --
|1 Nevers
|p 3652 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 140
|y 2018
999 C 5 |a 10.1002/smll.202309533
|9 -- missing cx lookup --
|1 Klepzig
|p e2309533 -
|2 Crossref
|t Small
|v 20
|y 2024
999 C 5 |a 10.1039/D3SC04296K
|9 -- missing cx lookup --
|1 Kong
|p 13244 -
|2 Crossref
|t Chem. Sci.
|v 14
|y 2023
999 C 5 |a 10.1038/s41467-021-22947-x
|9 -- missing cx lookup --
|1 Calvin
|p 2663 -
|2 Crossref
|t Nat. Commun.
|v 12
|y 2021
999 C 5 |a 10.1021/jacs.2c00423
|9 -- missing cx lookup --
|1 van der Bok
|p 8096 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 144
|y 2022


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21