001     617353
005     20250715171505.0
024 7 _ |a 10.1021/acs.langmuir.4c02753
|2 doi
024 7 _ |a 0743-7463
|2 ISSN
024 7 _ |a 1520-5827
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-06719
|2 datacite_doi
024 7 _ |a altmetric:169889759
|2 altmetric
024 7 _ |a pmid:39423348
|2 pmid
024 7 _ |a WOS:001340370600001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4403531581
037 _ _ |a PUBDB-2024-06719
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Klauke, Lea
|0 P:(DE-H253)PIP1107967
|b 0
245 _ _ |a Supraparticles from Cubic Iron Oxide Nanoparticles: Synthesis, Polymer Encapsulation, Functionalization, and Magnetic Properties
260 _ _ |a Washington, DC
|c 2024
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734686638_2232050
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Supraparticles (SPs) consisting of superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest for biomedical applications and magnetic separation. To enable their functionalization with biomolecules and to improve their stability in aqueous dispersion, polymer shells are grown on the SPs’ surface. Robust polymer encapsulation and functionalization is achieved via atom transfer radical polymerization (ATRP), improving the reaction control compared to free radical polymerizations. This study presents the emulsion-based assembly of differently sized cubic SPIONs (12–30 nm) into SPs with diameters ranging from ∼200 to ∼400 nm using dodecyltrimethylammonium bromide (DTAB) as the surfactant. The successful formation of well-defined spherical SPs depends upon the method used for mixing the SPION dispersion with the surfactant solution and requires the precise adjustment of the surfactant concentration. After purification, the SPs are encapsulated by growing surface-grafted polystyrene shells via activators generated by electron transfer (AGET) ATRP. The polymer shell can be decorated with functional groups (azide and carboxylate) using monomer blends for the polymerization reaction. When the amount of the monomer is varied, the shell thickness as well as the interparticle distances between the encapsulated SPIONs can be tuned with nanometer-scale precision. Small-angle X-ray scattering (SAXS) reveals that cubic SPIONs form less ordered assemblies within the SPs than spherical SPIONs. As shown by vibrating sample magnetometer measurements, the encapsulated SPs feature the same superparamagnetic behavior as their SPION building blocks. The saturation magnetization ranges between 10 and 30 emu/g and depends upon the nanocubes’ size and phase composition.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a SFB 986 A01 - Oberflächenmodifizierte Nanokristalle: Bausteine für hierarchisch strukturierte Hochleistungswerkstoffe (A01) (221132716)
|0 G:(GEPRIS)221132716
|c 221132716
|x 2
542 _ _ |i 2024-10-18
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to DataCite
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 0
700 1 _ |a Kampferbeck, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Holzapfel, Malte
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Feliu, Neus
|0 P:(DE-H253)PIP1085824
|b 3
700 1 _ |a Sochor, Benedikt
|0 P:(DE-H253)PIP1096609
|b 4
|u desy
700 1 _ |a Koyiloth Vayalil, Sarathlal
|0 P:(DE-H253)PIP1015063
|b 5
|u desy
700 1 _ |a Meyer, Andreas
|0 P:(DE-H253)PIP1008034
|b 6
700 1 _ |a Vossmeyer, Tobias
|0 P:(DE-H253)PIP1023847
|b 7
|e Corresponding author
773 1 8 |a 10.1021/acs.langmuir.4c02753
|b American Chemical Society (ACS)
|d 2024-10-18
|n 43
|p 22762-22772
|3 journal-article
|2 Crossref
|t Langmuir
|v 40
|y 2024
|x 0743-7463
773 _ _ |a 10.1021/acs.langmuir.4c02753
|g Vol. 40, no. 43, p. 22762 - 22772
|0 PERI:(DE-600)2005937-1
|n 43
|p 22762-22772
|t Langmuir
|v 40
|y 2024
|x 0743-7463
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/617353/files/Supporting%20information.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/617353/files/klauke-et-al-2024-supraparticles-from-cubic-iron-oxide-nanoparticles-synthesis-polymer-encapsulation-functionalization.pdf
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/617353/files/Supporting%20information.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/617353/files/klauke-et-al-2024-supraparticles-from-cubic-iron-oxide-nanoparticles-synthesis-polymer-encapsulation-functionalization.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:617353
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1107967
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1085824
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1096609
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1096609
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1015063
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1015063
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1008034
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1023847
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANGMUIR : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 1 _ |a FullTexts
999 C 5 |a 10.1039/C5CS00541H
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.2147/IJN.S321984
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cm3036746
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/jssc.200700088
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3390/diagnostics10050288
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/sstr.202300062
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.progpolymsci.2013.02.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/wnan.1861
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.eurpolymj.2010.11.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nn300365m
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/la400713p
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/la903815t
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/9783527626519
|9 -- missing cx lookup --
|2 Crossref
|u Elias, H.G. Makromoleküle: Industrielle Polymere und Synthesen; Wiley-VCH: Weinheim, Germany, 2001; pp 115–116.
999 C 5 |a 10.1021/ma00109a056
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41570-021-00328-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/15583724.2011.566405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cossms.2018.11.005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ma9804951
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D0TB00384K
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja00125a035
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.langmuir.9b01060
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ma980724j
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.2478/s11532-009-0092-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/1099-0518(200012)38:1+<4724::AID-POLA120>3.0.CO;2-Q
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ma051675v
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ma047389l
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja0429364
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jcis.2008.12.066
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3390/ma12183030
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.chemrev.6b00314
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cr2004212
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b505422b
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.langmuir.6b03644
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja0532638
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.langmuir.8b02073
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D0CC00948B
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.200701355
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S1600576714019773
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp0467494
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0021889810008289
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0909049512016895
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S1600576717015096
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.langmuir.1c01456
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b409601k
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/27/32/324002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jo00059a050
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C5PY01848J
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja076494i
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.eurpolymj.2006.06.026
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cm034777d
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Supermagnete.de. Cuboid magnet 50,8 × 50,8 × 25,4 mm, holds ∼ 100 kg; https://www.supermagnete.de/quadermagnete-neodym/quadermagnet-50.8mm-50.8mm-25.4mm_Q-51-51-25-N (accessed May 2024).
999 C 5 |a 10.1080/15583724.2017.1344703
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b104411g
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Supermagnete.de. Disc magnet Ø 10 mm, hight 5 mm, holds ∼ 2 kg; https://www.supermagnete.de/scheibenmagnete-neodym/scheibenmagnet-10mm-5mm_S-10-05-E (accessed May 2024).
999 C 5 |a 10.1021/ma901019r
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ma991612a
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.macromol.7b00465
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C4PY00709C
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat4553
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s11431-010-4110-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.langmuir.9b01938
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c3nr04562e
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jcis.2010.02.025
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acsnano.8b05032
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1478-7814/38/1/348
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1524/zkri.1926.63.1.144
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.talanta.2012.03.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.200400657
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cm0348904
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/advs.202106076
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21