001     617302
005     20250723172709.0
024 7 _ |a 10.1117/12.3028465
|2 doi
024 7 _ |a openalex:W4401562137
|2 openalex
037 _ _ |a PUBDB-2024-06688
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Irvine, Sarah C.
|0 P:(DE-H253)PIP1099915
|b 0
111 2 _ |a Developments in X-Ray Tomography XV
|c San Diego
|d 2024-08-18 - 2024-08-23
|w United States
245 _ _ |a Multi-modal image registration and machine learning for the generation of 3D virtual histology of bone implants
260 _ _ |a Bellingham, Wash.
|c 2024
|b SPIE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Contribution to a conference proceedings
|0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|m contrib
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736952306_4081795
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a In our correlative characterisation studies of biodegradable and permanent metal bone implants, we have performed both synchrotron-radiation microtomography (SR-μCT) and histology on the same samples. Histological staining is still the gold standard for tissue visualisation yet requires multiple time-consuming sample preparation steps (fixing, embedding, sectioning and staining) before imaging is performed on individual slices, in contrast to the non-invasive and 3D nature of tomography. In the process of correlating the corresponding data sets, we are able to combine advantages of both modalities by using machine learning methods to generate artificially stained 3D virtual histology datasets from SR-μCT datasets. For this we have developed an automated registration tool to find and fit the correct virtual tomographic plane to each histology slice. Preliminary results are promising after training a modified cycle generative adversarial network on our data, with two different histological stainings.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a 05D23CG1 - Verbundprojekt 05D2022 - KI4D4E: Ein KI-basiertes Framework für die Visualisierung und Auswertung der massiven Datenmengen der 4D-Tomographie für Endanwender von Beamlines. Teilprojekt 7. (BMBF-05D23CG1)
|0 G:(DE-Ds200)BMBF-05D23CG1
|c BMBF-05D23CG1
|f 05D23CG1
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
693 _ _ |a PETRA III
|f PETRA Beamline P05
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P05-20150101
|6 EXP:(DE-H253)P-P05-20150101
|x 0
700 1 _ |a Lucas, Christian
|0 P:(DE-H253)PIP1093527
|b 1
700 1 _ |a Bootbool, Moral
|0 P:(DE-H253)PIP1107099
|b 2
700 1 _ |a Galli, Silvia
|0 P:(DE-H253)PIP1020108
|b 3
700 1 _ |a Zeller-Plumhoff, Berit
|0 P:(DE-H253)PIP1031548
|b 4
700 1 _ |a Moosmann, Julian P.
|0 P:(DE-H253)PIP1030371
|b 5
|e Corresponding author
700 1 _ |a Müller, Bert
|0 P:(DE-H253)PIP1008015
|b 6
|e Editor
700 1 _ |a Wang, Ge
|b 7
|e Editor
773 1 8 |a 10.1117/12.3028465
|b SPIE
|d 2024-10-24
|p 70
|3 proceedings-article
|2 Crossref
|t Developments in X-Ray Tomography XV
|y 2024
773 _ _ |a 10.1117/12.3028465
|0 PERI:(DE-600)2398361-9
|p 70
|t Proceedings of SPIE
|v 13152
|y 2024
|x 0038-7355
856 4 _ |u https://bib-pubdb1.desy.de/record/617302/files/Irvine-2024-Multi-modal%20image%20registration%20and.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/617302/files/Irvine-2024-Multi-modal%20image%20registration%20and.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:617302
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1099915
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1093527
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1107099
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1020108
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 4
|6 P:(DE-H253)PIP1031548
910 1 _ |a Helmholtz-Zentrum Hereon
|0 I:(DE-588b)1231250402
|k Hereon
|b 4
|6 P:(DE-H253)PIP1031548
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 5
|6 P:(DE-H253)PIP1030371
910 1 _ |a Helmholtz-Zentrum Hereon
|0 I:(DE-588b)1231250402
|k Hereon
|b 5
|6 P:(DE-H253)PIP1030371
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1008015
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2025-01-01
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
920 1 _ |0 I:(DE-H253)Hereon-20210428
|k Hereon
|l Helmholtz-Zentrum Hereon
|x 0
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a contrib
980 _ _ |a I:(DE-H253)Hereon-20210428
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1007/s11307-018-1246-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/micmic/ozad082
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuroimage.2016.06.005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bioactmat.2021.10.041
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Jonas Albers
|y 2021
|2 Crossref
|o Jonas Albers 2021
999 C 5 |a 10.3389/fgstr.2023.1283052
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Johanna Reiser
|y 2024
|2 Crossref
|o Johanna Reiser 2024
999 C 5 |a 10.1088/1361-6560/acba74
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Igor Zingman
|y 2024
|2 Crossref
|o Igor Zingman 2024
999 C 5 |1 Jun-Yan Zhu
|y 2017
|2 Crossref
|t Proceedings of the IEEE international conference on computer vision
|o Jun-Yan Zhu Proceedings of the IEEE international conference on computer vision 2017
999 C 5 |a 10.1002/adem.v23.11
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bioactmat.2023.05.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bioactmat.2023.07.017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bioactmat.2024.07.019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u https://github.com/eriklindernoren/PyTorch-GAN/tree/master/implementations/cyclegan


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21