001     617259
005     20250715171008.0
024 7 _ |a 10.1038/s41467-024-53739-8
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-06656
|2 datacite_doi
024 7 _ |a altmetric:170304684
|2 altmetric
024 7 _ |a 39521771
|2 pmid
024 7 _ |a WOS:001352369200022
|2 WOS
024 7 _ |2 openalex
|a openalex:W4404198664
037 _ _ |a PUBDB-2024-06656
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Kengle, Caitlin
|0 P:(DE-H253)PIP1105721
|b 0
|e Corresponding author
245 _ _ |a Absence of bulk charge density wave order in the normal state of UTe$_2$
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1731490948_1998683
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A spatially modulated superconducting state, known as pair density wave (PDW), is a tantalizing state of matter with unique properties. Recent scanning tunneling microscopy (STM) studies revealed that spin-triplet superconductor UTe$_2$ hosts an unprecedented spin-triplet, multi-component PDW whose three wavevectors are indistinguishable from a preceding charge-density wave (CDW) order that survives to temperatures well above the superconducting critical temperature, Tc. Whether the PDW is the mother or a subordinate order remains unsettled. Here, based on a systematic search for bulk charge order above Tc using resonant elastic X-ray scattering (REXS), we show that the structure factor of charge order previously identified by STM is absent in the bulk within the sensitivity of REXS. Our results invite two scenarios: either the density-wave orders condense simultaneously at T$_c$ in the bulk, in which case PDW order is likely the mother phase, or the charge modulations are restricted to the surface.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20221340 EC (I-20221340-EC)
|0 G:(DE-H253)I-20221340-EC
|c I-20221340-EC
|x 2
536 _ _ |a PSI-FELLOW-III-3i - International, Interdisciplinary & Intersectoral Postdoctoral Fellowships at the Paul Scherrer Institut (884104)
|0 G:(EU-Grant)884104
|c 884104
|f H2020-MSCA-COFUND-2019
|x 3
542 _ _ |i 2024-11-09
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-11-09
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P09
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P09-20150101
|6 EXP:(DE-H253)P-P09-20150101
|x 0
700 1 _ |a Vonka, Jakub
|0 P:(DE-H253)PIP1087673
|b 1
700 1 _ |a Francoual, Sonia
|0 P:(DE-H253)PIP1007683
|b 2
700 1 _ |a Chang, Johan
|0 P:(DE-H253)PIP1013773
|b 3
700 1 _ |a Abbamonte, P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Janoschek, Marc
|0 P:(DE-H253)PIP1083807
|b 5
700 1 _ |a Rosa, P. F. S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Simeth, Wolfgang
|0 P:(DE-H253)PIP1024278
|b 7
|e Corresponding author
773 1 8 |a 10.1038/s41467-024-53739-8
|b Springer Science and Business Media LLC
|d 2024-11-09
|n 1
|p 9713
|3 journal-article
|2 Crossref
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
773 _ _ |a 10.1038/s41467-024-53739-8
|g Vol. 15, no. 1, p. 9713
|0 PERI:(DE-600)2553671-0
|n 1
|p 9713
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/617259/files/s41467-024-53739-8.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/617259/files/s41467-024-53739-8.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:617259
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1105721
910 1 _ |a Laboratory for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen PSI, Switzerland
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-H253)PIP1087673
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1007683
910 1 _ |a Physik-Institut, Universität Zürich, Zürich, Switzerland
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-H253)PIP1013773
910 1 _ |a Department of Physics and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Laboratory for Neutron and Muon Instrumentation, Paul Scherrer Institute, Villigen PSI, Switzerland
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-H253)PIP1083807
910 1 _ |a Los Alamos National Laboratory, Los Alamos, NM, USA
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1024278
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 1 _ |a FullTexts
999 C 5 |a 10.1103/PhysRevLett.55.2727
|9 -- missing cx lookup --
|1 TTM Palstra
|p 2727 -
|2 Crossref
|u Palstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2. Phys. Rev. Lett. 55, 2727–2730 (1985).
|t Phys. Rev. Lett.
|v 55
|y 1985
999 C 5 |a 10.1103/PhysRevLett.50.1595
|9 -- missing cx lookup --
|1 HR Ott
|p 1595 -
|2 Crossref
|u Ott, H. R., Rudigier, H., Fisk, Z. & Smith, J. L. UBe13: an unconventional actinide superconductor. Phys. Rev. Lett. 50, 1595–1598 (1983).
|t Phys. Rev. Lett.
|v 50
|y 1983
999 C 5 |a 10.1103/PhysRevLett.52.679
|9 -- missing cx lookup --
|1 GR Stewart
|p 679 -
|2 Crossref
|u Stewart, G. R., Fisk, Z., Willis, J. O. & Smith, J. L. Possibility of coexistence of bulk superconductivity and spin fluctuations in UPt3. Phys. Rev. Lett. 52, 679–682 (1984).
|t Phys. Rev. Lett.
|v 52
|y 1984
999 C 5 |a 10.1103/PhysRevLett.43.1892
|9 -- missing cx lookup --
|1 F Steglich
|p 1892 -
|2 Crossref
|u Steglich, F. et al. Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43, 1892–1896 (1979).
|t Phys. Rev. Lett.
|v 43
|y 1979
999 C 5 |a 10.1088/1361-6633/aa6ac7
|9 -- missing cx lookup --
|1 M Sato
|p 076501 -
|2 Crossref
|u Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).
|t Rep. Prog. Phys.
|v 80
|y 2017
999 C 5 |a 10.1146/annurev-conmatphys-031119-050711
|9 -- missing cx lookup --
|1 DF Agterberg
|p 231 -
|2 Crossref
|u Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).
|t Annu. Rev. Condens. Matter Phys.
|v 11
|y 2020
999 C 5 |a 10.1126/science.1243479
|9 -- missing cx lookup --
|1 EH da Silva Neto
|p 393 -
|2 Crossref
|u da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).
|t Science
|v 343
|y 2014
999 C 5 |a 10.1126/science.aav8645
|9 -- missing cx lookup --
|1 S Ran
|p 684 -
|2 Crossref
|u Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019).
|t Science
|v 365
|y 2019
999 C 5 |a 10.7566/JPSJ.88.043702
|9 -- missing cx lookup --
|1 D Aoki
|p 1 -
|2 Crossref
|u Aoki, D. et al. Unconventional superconductivity in heavy fermion UTe2. J. Phys. Soc. Jpn. 88, 1–5 (2019).
|t J. Phys. Soc. Jpn.
|v 88
|y 2019
999 C 5 |a 10.7566/JPSJ.92.063701
|9 -- missing cx lookup --
|1 H Matsumura
|p 063701 -
|2 Crossref
|u Matsumura, H. et al. Large reduction in the a-axis knight shift on UTe2 with Tc= 2.1 K. J. Phys. Soc. Jpn. 92, 063701 (2023).
|t J. Phys. Soc. Jpn.
|v 92
|y 2023
999 C 5 |a 10.7566/JPSJ.88.113703
|9 -- missing cx lookup --
|1 G Nakamine
|p 113703 -
|2 Crossref
|u Nakamine, G. et al. Superconducting properties of heavy fermion UTe2 revealed by 125Te-nuclear magnetic resonance. J. Phys. Soc. Jpn. 88, 113703 (2019).
|t J. Phys. Soc. Jpn.
|v 88
|y 2019
999 C 5 |a 10.1038/s41567-019-0670-x
|9 -- missing cx lookup --
|1 S Ran
|p 1250 -
|2 Crossref
|u Ran, S. et al. Extreme magnetic field-boosted superconductivity. Nat. Phys. 15, 1250–1254 (2019).
|t Nat. Phys.
|v 15
|y 2019
999 C 5 |a 10.7566/JPSJ.88.063707
|9 -- missing cx lookup --
|1 G Knebel
|p 063707 -
|2 Crossref
|u Knebel, G. et al. Field-reentrant superconductivity close to a metamagnetic transition in the heavy-fermion superconductor UTe2. J. Phys. Soc. Jpn. 88, 063707 (2019).
|t J. Phys. Soc. Jpn.
|v 88
|y 2019
999 C 5 |a 10.1038/s41586-020-2122-2
|9 -- missing cx lookup --
|1 L Jiao
|p 523 -
|2 Crossref
|u Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).
|t Nature
|v 579
|y 2020
999 C 5 |a 10.1126/science.abb0272
|9 -- missing cx lookup --
|1 I Hayes
|p 797 -
|2 Crossref
|u Hayes, I. et al. Multicomponent superconducting order parameter in UTe2. Science 373, 797–801 (2021).
|t Science
|v 373
|y 2021
999 C 5 |a 10.1103/PhysRevB.105.024521
|9 -- missing cx lookup --
|1 DS Wei
|p 024521 -
|2 Crossref
|u Wei, D. S. et al. Interplay between magnetism and superconductivity in UTe2. Phys. Rev. B 105, 024521 (2022).
|t Phys. Rev. B
|v 105
|y 2022
999 C 5 |a 10.1038/s41467-023-38688-y
|1 K Ishihara
|9 -- missing cx lookup --
|2 Crossref
|u Ishihara, K. et al. Chiral superconductivity in UTe2 probed by anisotropic low-energy excitations. Nat. Commun. 14, 2966 (2023).
|t Nat. Commun.
|v 14
|y 2023
999 C 5 |a 10.1103/PhysRevB.104.224501
|9 -- missing cx lookup --
|1 SM Thomas
|p 224501 -
|2 Crossref
|u Thomas, S. M. et al. Spatially inhomogeneous superconductivity in UTe2. Phys. Rev. B 104, 224501 (2021).
|t Phys. Rev. B
|v 104
|y 2021
999 C 5 |a 10.1038/s41567-024-02493-1
|9 -- missing cx lookup --
|2 Crossref
|u Theuss, F. et al. Single-component superconductivity in UTe2 at ambient pressure. Nat. Phys. 20, 1124–1130 (2024).
999 C 5 |2 Crossref
|u Li, Z. et al. Observation of odd-parity superconductivity in UTe2 (2023).
999 C 5 |1 MO Ajeesh
|y 2023
|2 Crossref
|u Ajeesh, M. O. et al. Fate of time-reversal symmetry breaking in UTe2. Phys. Rev. X 13, 041019 (2023).
999 C 5 |a 10.1103/PhysRevLett.130.196003
|9 -- missing cx lookup --
|1 Y Iguchi
|p 196003 -
|2 Crossref
|u Iguchi, Y. et al. Microscopic imaging homogeneous and single phase superfluid density in UTe2. Phys. Rev. Lett. 130, 196003 (2023).
|t Phys. Rev. Lett.
|v 130
|y 2023
999 C 5 |a 10.1038/s41586-023-06005-8
|9 -- missing cx lookup --
|1 A Aishwarya
|p 928 -
|2 Crossref
|u Aishwarya, A. et al. Magnetic-field-sensitive charge density waves in the superconductor UTe2. Nature 618, 928 (2023).
|t Nature
|v 618
|y 2023
999 C 5 |a 10.1038/s41586-023-05919-7
|9 -- missing cx lookup --
|1 Q Gu
|p 921 -
|2 Crossref
|u Gu, Q. et al. Detection of a pair density wave state in UTe2. Nature 618, 921 (2023).
|t Nature
|v 618
|y 2023
999 C 5 |a 10.1038/s41467-024-48844-7
|1 A LaFleur
|9 -- missing cx lookup --
|2 Crossref
|u LaFleur, A. et al. Inhomogeneous high temperature melting and decoupling of charge density waves in spin-triplet superconductor UTe2. Nat. Commun. 15, 4456 (2024).
|t Nat. Commun.
|v 15
|y 2024
999 C 5 |a 10.1038/381398a0
|9 -- missing cx lookup --
|1 JM Carpinelli
|p 398 -
|2 Crossref
|u Carpinelli, J. M., Weitering, H. H., Plummer, E. W. & Stumpf, R. Direct observation of a surface charge density wave. Nature 381, 398–400 (1996).
|t Nature
|v 381
|y 1996
999 C 5 |a 10.1103/PhysRevB.49.16899
|9 -- missing cx lookup --
|1 RE Thomson
|p 16899 -
|2 Crossref
|u Thomson, R. E., Burk, B., Zettl, A. & Clarke, J. Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS2. Phys. Rev. B 49, 16899–16916 (1994).
|t Phys. Rev. B
|v 49
|y 1994
999 C 5 |a 10.1038/s41467-022-33995-2
|1 H Li
|9 -- missing cx lookup --
|2 Crossref
|u Li, H. et al. Discovery of conjoined charge density waves in the kagome superconductor CsV3Sb5. Nat. Commun. 13, 6348 (2022).
|t Nat. Commun.
|v 13
|y 2022
999 C 5 |a 10.1103/PhysRevB.100.220504
|9 -- missing cx lookup --
|1 T Metz
|p 220504 -
|2 Crossref
|u Metz, T. et al. Point-node gap structure of the spin-triplet superconductor UTe2. Phys. Rev. B 100, 220504 (2019).
|t Phys. Rev. B
|v 100
|y 2019
999 C 5 |a 10.1103/PhysRevMaterials.6.073401
|9 -- missing cx lookup --
|1 H Sakai
|p 073401 -
|2 Crossref
|u Sakai, H. et al. Single crystal growth of superconducting UTe2 by molten salt flux method. Phys. Rev. Mater. 6, 073401 (2022).
|t Phys. Rev. Mater.
|v 6
|y 2022
999 C 5 |a 10.1038/s43246-022-00254-2
|9 -- missing cx lookup --
|1 PF Rosa
|p 33 -
|2 Crossref
|u Rosa, P. F. et al. Single thermodynamic transition at 2 K in superconducting UTe2 single crystals. Nat. Commun. Mater. 3, 33 (2022).
|t Nat. Commun. Mater.
|v 3
|y 2022
999 C 5 |a 10.1146/annurev-conmatphys-031115-011401
|9 -- missing cx lookup --
|1 R Comin
|p 369 -
|2 Crossref
|u Comin, R. & Damascelli, A. Resonant X-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405 (2016).
|t Annu. Rev. Condens. Matter Phys.
|v 7
|y 2016
999 C 5 |a 10.1038/nphys178
|9 -- missing cx lookup --
|1 P Abbamonte
|p 155 -
|2 Crossref
|u Abbamonte, P. et al. Spatially modulated ’Mottness’ in La2−xBaxCuO4. Nat. Phys. 1, 155–158 (2005).
|t Nat. Phys.
|v 1
|y 2005
999 C 5 |a 10.1038/s41567-024-02429-9
|9 -- missing cx lookup --
|1 A Aishwarya
|p 964 -
|2 Crossref
|u Aishwarya, A. et al. Melting of the charge density wave by generation of pairs of topological defects in UTe2. Nat. Phys. 20, 964–969 (2024).
|t Nat. Phys.
|v 20
|y 2024
999 C 5 |1 J Kindervater
|y 2019
|2 Crossref
|u Kindervater, J. et al. Weak crystallization of fluctuating skyrmion textures in MnSi. Phys. Rev. X 9, 041059 (2019).
999 C 5 |a 10.1107/S0108767395012670
|9 -- missing cx lookup --
|1 JP Hill
|p 236 -
|2 Crossref
|u Hill, J. P. & McMorrow, D. F. Resonant exchange scattering: polarization dependence and correlation function. Acta Cryst. A 52, 236 (1996).
|t Acta Cryst. A
|v 52
|y 1996
999 C 5 |a 10.1103/PhysRevB.89.220511
|9 -- missing cx lookup --
|1 M Hashimoto
|p 220511 -
|2 Crossref
|u Hashimoto, M. et al. Direct observation of bulk charge modulations in optimally doped Bi1.5Pb0.6Sr1.54Ca2O8+δ. Phys. Rev. B 89, 220511 (2014).
|t Phys. Rev. B
|v 89
|y 2014
999 C 5 |a 10.1038/nphys2456
|9 -- missing cx lookup --
|1 J Chang
|p 871 -
|2 Crossref
|u Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).
|t Nat. Phys.
|v 8
|y 2012
999 C 5 |a 10.1103/PhysRevB.74.195113
|9 -- missing cx lookup --
|1 P Abbamonte
|p 195113 -
|2 Crossref
|u Abbamonte, P. Charge modulations versus strain waves in resonant x-ray scattering. Phys. Rev. B 74, 195113 (2006).
|t Phys. Rev. B
|v 74
|y 2006
999 C 5 |a 10.1038/ncomms10064
|1 EM Forgan
|9 -- missing cx lookup --
|2 Crossref
|u Forgan, E. M. et al. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction. Nat. Commun. 6, 10064 (2015).
|t Nat. Commun.
|v 6
|y 2015
999 C 5 |a 10.1103/PhysRevLett.125.237003
|9 -- missing cx lookup --
|1 C Duan
|p 237003 -
|2 Crossref
|u Duan, C. et al. Incommensurate spin fluctuations in the spin-triplet superconductor candidate UTe2. Phys. Rev. Lett. 125, 237003 (2020).
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |a 10.1038/s41586-021-04151-5
|9 -- missing cx lookup --
|1 C Duan
|p 636 -
|2 Crossref
|u Duan, C. et al. Resonance from antiferromagnetic spin fluctuations for superconductivity in UTe2. Nature 600, 636–640 (2021).
|t Nature
|v 600
|y 2021
999 C 5 |a 10.1038/s41535-022-00445-7
|1 NP Butch
|9 -- missing cx lookup --
|2 Crossref
|u Butch, N. P. et al. Symmetry of magnetic correlations in spin-triplet superconductor UTe2. npj Quantum Mater. 7, 39 (2022).
|t npj Quantum Mater.
|v 7
|y 2022
999 C 5 |a 10.1103/PhysRevB.104.L100409
|9 -- missing cx lookup --
|1 W Knafo
|p L100409 -
|2 Crossref
|u Knafo, W. et al. Low-dimensional antiferromagnetic fluctuations in the heavy-fermion paramagnetic ladder compound UTe2. Phys. Rev. B 104, L100409 (2021).
|t Phys. Rev. B
|v 104
|y 2021
999 C 5 |a 10.1103/PhysRevB.110.145101
|9 -- missing cx lookup --
|1 CS Kengle
|p 145101 -
|2 Crossref
|u Kengle, C. S. et al. Absence of a bulk signature of a charge density wave in hard x-ray measurements of UTe2. Phys. Rev. B 110, 145101 (2024).
|t Phys. Rev. B
|v 110
|y 2024
999 C 5 |a 10.1103/PhysRevB.110.144507
|9 -- missing cx lookup --
|1 F Theuss
|p 144507 -
|2 Crossref
|u Theuss, F. et al. Absence of a bulk thermodynamic phase transition to a density wave phase in UTe2. Phys. Rev. B 110, 144507 (2024).
|t Phys. Rev. B
|v 110
|y 2024
999 C 5 |a 10.1107/S0909049513009011
|9 -- missing cx lookup --
|1 J Strempfer
|p 541 -
|2 Crossref
|u Strempfer, J. et al. Resonant scattering and diffraction beamline P09 at PETRA III. J. Synchrotron Rad. 20, 541 (2013).
|t J. Synchrotron Rad.
|v 20
|y 2013
999 C 5 |1 S Francoual
|y 2013
|2 Crossref
|u Francoual, S., Strempfer, J., Reuther, D., Shukla, D. K. & Skaugen, A. Double phase-retarder set-up at beamline P09 at PETRA III. J. Phys.: Conf. Ser. 425, 132010 (2013).
999 C 5 |a 10.5281/zenodo.13948391
|9 -- missing cx lookup --
|2 Crossref
|u Simeth, W. (2024). Dataset package for the Manuscript "Absence of bulk charge density wave order in the normal state of UTe2". Zenodo. https://doi.org/10.5281/zenodo.13948391 (2024).


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21