000617259 001__ 617259
000617259 005__ 20250715171008.0
000617259 0247_ $$2doi$$a10.1038/s41467-024-53739-8
000617259 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06656
000617259 0247_ $$2altmetric$$aaltmetric:170304684
000617259 0247_ $$2pmid$$a39521771
000617259 0247_ $$2WOS$$aWOS:001352369200022
000617259 0247_ $$2openalex$$aopenalex:W4404198664
000617259 037__ $$aPUBDB-2024-06656
000617259 041__ $$aEnglish
000617259 082__ $$a500
000617259 1001_ $$0P:(DE-H253)PIP1105721$$aKengle, Caitlin$$b0$$eCorresponding author
000617259 245__ $$aAbsence of bulk charge density wave order in the normal state of UTe$_2$
000617259 260__ $$a[London]$$bNature Publishing Group UK$$c2024
000617259 3367_ $$2DRIVER$$aarticle
000617259 3367_ $$2DataCite$$aOutput Types/Journal article
000617259 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1731490948_1998683
000617259 3367_ $$2BibTeX$$aARTICLE
000617259 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000617259 3367_ $$00$$2EndNote$$aJournal Article
000617259 520__ $$aA spatially modulated superconducting state, known as pair density wave (PDW), is a tantalizing state of matter with unique properties. Recent scanning tunneling microscopy (STM) studies revealed that spin-triplet superconductor UTe$_2$ hosts an unprecedented spin-triplet, multi-component PDW whose three wavevectors are indistinguishable from a preceding charge-density wave (CDW) order that survives to temperatures well above the superconducting critical temperature, Tc. Whether the PDW is the mother or a subordinate order remains unsettled. Here, based on a systematic search for bulk charge order above Tc using resonant elastic X-ray scattering (REXS), we show that the structure factor of charge order previously identified by STM is absent in the bulk within the sensitivity of REXS. Our results invite two scenarios: either the density-wave orders condense simultaneously at T$_c$ in the bulk, in which case PDW order is likely the mother phase, or the charge modulations are restricted to the surface.
000617259 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000617259 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000617259 536__ $$0G:(DE-H253)I-20221340-EC$$aFS-Proposal: I-20221340 EC (I-20221340-EC)$$cI-20221340-EC$$x2
000617259 536__ $$0G:(EU-Grant)884104$$aPSI-FELLOW-III-3i - International, Interdisciplinary & Intersectoral Postdoctoral Fellowships at the Paul Scherrer Institut (884104)$$c884104$$fH2020-MSCA-COFUND-2019$$x3
000617259 542__ $$2Crossref$$i2024-11-09$$uhttps://creativecommons.org/licenses/by/4.0
000617259 542__ $$2Crossref$$i2024-11-09$$uhttps://creativecommons.org/licenses/by/4.0
000617259 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000617259 693__ $$0EXP:(DE-H253)P-P09-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P09-20150101$$aPETRA III$$fPETRA Beamline P09$$x0
000617259 7001_ $$0P:(DE-H253)PIP1087673$$aVonka, Jakub$$b1
000617259 7001_ $$0P:(DE-H253)PIP1007683$$aFrancoual, Sonia$$b2
000617259 7001_ $$0P:(DE-H253)PIP1013773$$aChang, Johan$$b3
000617259 7001_ $$0P:(DE-HGF)0$$aAbbamonte, P.$$b4
000617259 7001_ $$0P:(DE-H253)PIP1083807$$aJanoschek, Marc$$b5
000617259 7001_ $$0P:(DE-HGF)0$$aRosa, P. F. S.$$b6
000617259 7001_ $$0P:(DE-H253)PIP1024278$$aSimeth, Wolfgang$$b7$$eCorresponding author
000617259 77318 $$2Crossref$$3journal-article$$a10.1038/s41467-024-53739-8$$bSpringer Science and Business Media LLC$$d2024-11-09$$n1$$p9713$$tNature Communications$$v15$$x2041-1723$$y2024
000617259 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-53739-8$$gVol. 15, no. 1, p. 9713$$n1$$p9713$$tNature Communications$$v15$$x2041-1723$$y2024
000617259 8564_ $$uhttps://bib-pubdb1.desy.de/record/617259/files/s41467-024-53739-8.pdf$$yOpenAccess
000617259 8564_ $$uhttps://bib-pubdb1.desy.de/record/617259/files/s41467-024-53739-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000617259 909CO $$ooai:bib-pubdb1.desy.de:617259$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000617259 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105721$$aExternal Institute$$b0$$kExtern
000617259 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087673$$a Laboratory for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen PSI, Switzerland$$b1
000617259 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007683$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000617259 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013773$$a Physik-Institut, Universität Zürich, Zürich, Switzerland$$b3
000617259 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA$$b4
000617259 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083807$$a Laboratory for Neutron and Muon Instrumentation, Paul Scherrer Institute, Villigen PSI, Switzerland$$b5
000617259 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Los Alamos National Laboratory, Los Alamos, NM, USA$$b6
000617259 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1024278$$aExternal Institute$$b7$$kExtern
000617259 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000617259 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000617259 9141_ $$y2024
000617259 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000617259 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000617259 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000617259 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000617259 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000617259 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000617259 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000617259 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
000617259 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000617259 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000617259 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
000617259 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
000617259 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
000617259 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000617259 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
000617259 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
000617259 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000617259 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000617259 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000617259 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000617259 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
000617259 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000617259 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x1
000617259 980__ $$ajournal
000617259 980__ $$aVDB
000617259 980__ $$aUNRESTRICTED
000617259 980__ $$aI:(DE-H253)HAS-User-20120731
000617259 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000617259 9801_ $$aFullTexts
000617259 999C5 $$1TTM Palstra$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.55.2727$$p2727 -$$tPhys. Rev. Lett.$$uPalstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2. Phys. Rev. Lett. 55, 2727–2730 (1985).$$v55$$y1985
000617259 999C5 $$1HR Ott$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.50.1595$$p1595 -$$tPhys. Rev. Lett.$$uOtt, H. R., Rudigier, H., Fisk, Z. & Smith, J. L. UBe13: an unconventional actinide superconductor. Phys. Rev. Lett. 50, 1595–1598 (1983).$$v50$$y1983
000617259 999C5 $$1GR Stewart$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.52.679$$p679 -$$tPhys. Rev. Lett.$$uStewart, G. R., Fisk, Z., Willis, J. O. & Smith, J. L. Possibility of coexistence of bulk superconductivity and spin fluctuations in UPt3. Phys. Rev. Lett. 52, 679–682 (1984).$$v52$$y1984
000617259 999C5 $$1F Steglich$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.43.1892$$p1892 -$$tPhys. Rev. Lett.$$uSteglich, F. et al. Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43, 1892–1896 (1979).$$v43$$y1979
000617259 999C5 $$1M Sato$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6633/aa6ac7$$p076501 -$$tRep. Prog. Phys.$$uSato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).$$v80$$y2017
000617259 999C5 $$1DF Agterberg$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-031119-050711$$p231 -$$tAnnu. Rev. Condens. Matter Phys.$$uAgterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).$$v11$$y2020
000617259 999C5 $$1EH da Silva Neto$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1243479$$p393 -$$tScience$$uda Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).$$v343$$y2014
000617259 999C5 $$1S Ran$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aav8645$$p684 -$$tScience$$uRan, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019).$$v365$$y2019
000617259 999C5 $$1D Aoki$$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJ.88.043702$$p1 -$$tJ. Phys. Soc. Jpn.$$uAoki, D. et al. Unconventional superconductivity in heavy fermion UTe2. J. Phys. Soc. Jpn. 88, 1–5 (2019).$$v88$$y2019
000617259 999C5 $$1H Matsumura$$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJ.92.063701$$p063701 -$$tJ. Phys. Soc. Jpn.$$uMatsumura, H. et al. Large reduction in the a-axis knight shift on UTe2 with Tc= 2.1 K. J. Phys. Soc. Jpn. 92, 063701 (2023).$$v92$$y2023
000617259 999C5 $$1G Nakamine$$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJ.88.113703$$p113703 -$$tJ. Phys. Soc. Jpn.$$uNakamine, G. et al. Superconducting properties of heavy fermion UTe2 revealed by 125Te-nuclear magnetic resonance. J. Phys. Soc. Jpn. 88, 113703 (2019).$$v88$$y2019
000617259 999C5 $$1S Ran$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-019-0670-x$$p1250 -$$tNat. Phys.$$uRan, S. et al. Extreme magnetic field-boosted superconductivity. Nat. Phys. 15, 1250–1254 (2019).$$v15$$y2019
000617259 999C5 $$1G Knebel$$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJ.88.063707$$p063707 -$$tJ. Phys. Soc. Jpn.$$uKnebel, G. et al. Field-reentrant superconductivity close to a metamagnetic transition in the heavy-fermion superconductor UTe2. J. Phys. Soc. Jpn. 88, 063707 (2019).$$v88$$y2019
000617259 999C5 $$1L Jiao$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2122-2$$p523 -$$tNature$$uJiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).$$v579$$y2020
000617259 999C5 $$1I Hayes$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abb0272$$p797 -$$tScience$$uHayes, I. et al. Multicomponent superconducting order parameter in UTe2. Science 373, 797–801 (2021).$$v373$$y2021
000617259 999C5 $$1DS Wei$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.105.024521$$p024521 -$$tPhys. Rev. B$$uWei, D. S. et al. Interplay between magnetism and superconductivity in UTe2. Phys. Rev. B 105, 024521 (2022).$$v105$$y2022
000617259 999C5 $$1K Ishihara$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-023-38688-y$$tNat. Commun.$$uIshihara, K. et al. Chiral superconductivity in UTe2 probed by anisotropic low-energy excitations. Nat. Commun. 14, 2966 (2023).$$v14$$y2023
000617259 999C5 $$1SM Thomas$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.104.224501$$p224501 -$$tPhys. Rev. B$$uThomas, S. M. et al. Spatially inhomogeneous superconductivity in UTe2. Phys. Rev. B 104, 224501 (2021).$$v104$$y2021
000617259 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-024-02493-1$$uTheuss, F. et al. Single-component superconductivity in UTe2 at ambient pressure. Nat. Phys. 20, 1124–1130 (2024).
000617259 999C5 $$2Crossref$$uLi, Z. et al. Observation of odd-parity superconductivity in UTe2 (2023).
000617259 999C5 $$1MO Ajeesh$$2Crossref$$uAjeesh, M. O. et al. Fate of time-reversal symmetry breaking in UTe2. Phys. Rev. X 13, 041019 (2023).$$y2023
000617259 999C5 $$1Y Iguchi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.196003$$p196003 -$$tPhys. Rev. Lett.$$uIguchi, Y. et al. Microscopic imaging homogeneous and single phase superfluid density in UTe2. Phys. Rev. Lett. 130, 196003 (2023).$$v130$$y2023
000617259 999C5 $$1A Aishwarya$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-023-06005-8$$p928 -$$tNature$$uAishwarya, A. et al. Magnetic-field-sensitive charge density waves in the superconductor UTe2. Nature 618, 928 (2023).$$v618$$y2023
000617259 999C5 $$1Q Gu$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-023-05919-7$$p921 -$$tNature$$uGu, Q. et al. Detection of a pair density wave state in UTe2. Nature 618, 921 (2023).$$v618$$y2023
000617259 999C5 $$1A LaFleur$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-024-48844-7$$tNat. Commun.$$uLaFleur, A. et al. Inhomogeneous high temperature melting and decoupling of charge density waves in spin-triplet superconductor UTe2. Nat. Commun. 15, 4456 (2024).$$v15$$y2024
000617259 999C5 $$1JM Carpinelli$$2Crossref$$9-- missing cx lookup --$$a10.1038/381398a0$$p398 -$$tNature$$uCarpinelli, J. M., Weitering, H. H., Plummer, E. W. & Stumpf, R. Direct observation of a surface charge density wave. Nature 381, 398–400 (1996).$$v381$$y1996
000617259 999C5 $$1RE Thomson$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.16899$$p16899 -$$tPhys. Rev. B$$uThomson, R. E., Burk, B., Zettl, A. & Clarke, J. Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS2. Phys. Rev. B 49, 16899–16916 (1994).$$v49$$y1994
000617259 999C5 $$1H Li$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-33995-2$$tNat. Commun.$$uLi, H. et al. Discovery of conjoined charge density waves in the kagome superconductor CsV3Sb5. Nat. Commun. 13, 6348 (2022).$$v13$$y2022
000617259 999C5 $$1T Metz$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.100.220504$$p220504 -$$tPhys. Rev. B$$uMetz, T. et al. Point-node gap structure of the spin-triplet superconductor UTe2. Phys. Rev. B 100, 220504 (2019).$$v100$$y2019
000617259 999C5 $$1H Sakai$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.6.073401$$p073401 -$$tPhys. Rev. Mater.$$uSakai, H. et al. Single crystal growth of superconducting UTe2 by molten salt flux method. Phys. Rev. Mater. 6, 073401 (2022).$$v6$$y2022
000617259 999C5 $$1PF Rosa$$2Crossref$$9-- missing cx lookup --$$a10.1038/s43246-022-00254-2$$p33 -$$tNat. Commun. Mater.$$uRosa, P. F. et al. Single thermodynamic transition at 2 K in superconducting UTe2 single crystals. Nat. Commun. Mater. 3, 33 (2022).$$v3$$y2022
000617259 999C5 $$1R Comin$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-031115-011401$$p369 -$$tAnnu. Rev. Condens. Matter Phys.$$uComin, R. & Damascelli, A. Resonant X-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405 (2016).$$v7$$y2016
000617259 999C5 $$1P Abbamonte$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys178$$p155 -$$tNat. Phys.$$uAbbamonte, P. et al. Spatially modulated ’Mottness’ in La2−xBaxCuO4. Nat. Phys. 1, 155–158 (2005).$$v1$$y2005
000617259 999C5 $$1A Aishwarya$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-024-02429-9$$p964 -$$tNat. Phys.$$uAishwarya, A. et al. Melting of the charge density wave by generation of pairs of topological defects in UTe2. Nat. Phys. 20, 964–969 (2024).$$v20$$y2024
000617259 999C5 $$1J Kindervater$$2Crossref$$uKindervater, J. et al. Weak crystallization of fluctuating skyrmion textures in MnSi. Phys. Rev. X 9, 041059 (2019).$$y2019
000617259 999C5 $$1JP Hill$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0108767395012670$$p236 -$$tActa Cryst. A$$uHill, J. P. & McMorrow, D. F. Resonant exchange scattering: polarization dependence and correlation function. Acta Cryst. A 52, 236 (1996).$$v52$$y1996
000617259 999C5 $$1M Hashimoto$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.220511$$p220511 -$$tPhys. Rev. B$$uHashimoto, M. et al. Direct observation of bulk charge modulations in optimally doped Bi1.5Pb0.6Sr1.54Ca2O8+δ. Phys. Rev. B 89, 220511 (2014).$$v89$$y2014
000617259 999C5 $$1J Chang$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2456$$p871 -$$tNat. Phys.$$uChang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).$$v8$$y2012
000617259 999C5 $$1P Abbamonte$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.195113$$p195113 -$$tPhys. Rev. B$$uAbbamonte, P. Charge modulations versus strain waves in resonant x-ray scattering. Phys. Rev. B 74, 195113 (2006).$$v74$$y2006
000617259 999C5 $$1EM Forgan$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms10064$$tNat. Commun.$$uForgan, E. M. et al. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction. Nat. Commun. 6, 10064 (2015).$$v6$$y2015
000617259 999C5 $$1C Duan$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.237003$$p237003 -$$tPhys. Rev. Lett.$$uDuan, C. et al. Incommensurate spin fluctuations in the spin-triplet superconductor candidate UTe2. Phys. Rev. Lett. 125, 237003 (2020).$$v125$$y2020
000617259 999C5 $$1C Duan$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-04151-5$$p636 -$$tNature$$uDuan, C. et al. Resonance from antiferromagnetic spin fluctuations for superconductivity in UTe2. Nature 600, 636–640 (2021).$$v600$$y2021
000617259 999C5 $$1NP Butch$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41535-022-00445-7$$tnpj Quantum Mater.$$uButch, N. P. et al. Symmetry of magnetic correlations in spin-triplet superconductor UTe2. npj Quantum Mater. 7, 39 (2022).$$v7$$y2022
000617259 999C5 $$1W Knafo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.104.L100409$$pL100409 -$$tPhys. Rev. B$$uKnafo, W. et al. Low-dimensional antiferromagnetic fluctuations in the heavy-fermion paramagnetic ladder compound UTe2. Phys. Rev. B 104, L100409 (2021).$$v104$$y2021
000617259 999C5 $$1CS Kengle$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.110.145101$$p145101 -$$tPhys. Rev. B$$uKengle, C. S. et al. Absence of a bulk signature of a charge density wave in hard x-ray measurements of UTe2. Phys. Rev. B 110, 145101 (2024).$$v110$$y2024
000617259 999C5 $$1F Theuss$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.110.144507$$p144507 -$$tPhys. Rev. B$$uTheuss, F. et al. Absence of a bulk thermodynamic phase transition to a density wave phase in UTe2. Phys. Rev. B 110, 144507 (2024).$$v110$$y2024
000617259 999C5 $$1J Strempfer$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0909049513009011$$p541 -$$tJ. Synchrotron Rad.$$uStrempfer, J. et al. Resonant scattering and diffraction beamline P09 at PETRA III. J. Synchrotron Rad. 20, 541 (2013).$$v20$$y2013
000617259 999C5 $$1S Francoual$$2Crossref$$uFrancoual, S., Strempfer, J., Reuther, D., Shukla, D. K. & Skaugen, A. Double phase-retarder set-up at beamline P09 at PETRA III. J. Phys.: Conf. Ser. 425, 132010 (2013).$$y2013
000617259 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5281/zenodo.13948391$$uSimeth, W. (2024). Dataset package for the Manuscript "Absence of bulk charge density wave order in the normal state of UTe2". Zenodo. https://doi.org/10.5281/zenodo.13948391 (2024).